Das übergreifende Manufacturing Operations Management wird oft als Weiterentwicklung klassischer MES-Konzepte verstanden. Reichern Betreiber ihre MOM-Systeme mit Sensordaten an, werden vielfältige Optimierungen auf der Basis von Echtzeit-Daten möglich. Im Beispiel eines japanischen Produzenten waren es etwa die Reduzierung von Stillstandszeiten und Kosten.
(Bild: Comarch Software und Beratung AG)
Viele Hersteller von Manufacturing Execution-Systems (MES) entwickeln ihre Lösungen aktuell in Richtung Manufacturing Operations Management (MOM) weiter. Denn im Zusammenspiel etwa mit ERP- und BI-Software, mit IoT- und KI-Applikationen ermöglichen MOM-Systemverbünde vielfältige Smart-Factory-Szenarien: Planung, Steuerung, Ausführung, Auswertung, Prognose und Optimierung der Produktion und Logistik. Ein MOM-System lässt sich als Hub integrieren, der ERP- und Maschinendaten aufnimmt. Die Arbeiten der Mitarbeiter, Software, Maschinen und Roboter werden transparent in Datenketten dokumentiert, oder erfasste Echtzeit-Daten mit Business Intelligence oder künstlicher Intelligenz analysiert, um daraus Handlungsempfehlungen abzuleiten. Daten und Dashboards helfen, Produktionen weiter zu optimieren.
Integrierte Fertigungsdaten
Für das MOM werden ERP-, IoT- und MES-Daten zusammengefasst, ausgewertet und verarbeitet. Das beschränkt sich nicht nur auf Daten der Anwendungsprogramme, sondern umfasst weitere integrierte Systeme etwa mit Sensoren- und Maschinendaten. Dabei wird häufig auf Logfiles von Maschinen zurückgegriffen, was gerade bei modernen Anlagen oft standardmäßig möglich ist – und sich bei älteren durch Retrofit nachrüsten lässt. Dabei sind IoT-integrierte Sensoren mit ihren Prozessdaten, Servicedaten und Ereignisdaten der Schlüssel zu Echtzeit-Applikationen. Bei der Sensorkommunikation gilt IO-Link als Standard für Datentransfers. IO-Link-Sensoren transportieren im Kommunikationsprotokoll zusätzliche Informationen und speichern Einstellungen zu Parametern, um ihren Austausch etwa im Fall von Beschädigungen zu erleichtern. Ihre Nachfolger können während des laufenden Betriebs alle gespeicherten Informationen übernehmen. In den Dashboards werden die ausgewerteten Daten übersichtlich visualisiert. So ergebt sich ein Bild, an welcher Schraube gedreht werden kann, um die Produktion und generell die OEE (Overall Equipment Effectiveness) zu verbessern. Prognosen zur ‚Mean Time to Repair‘ oder ‚Mean Time to Failure‘ bei den Maschine sind nach wenigen Klicks ersichtlich. Das aktuelle Wissen rund um Maschinenverfügbarkeiten hilft den Verantwortlichen, ihre Fertigung effizient zu steuern. Durch eine zusätzliche Integration von Asset Tracking lassen sich die Analysen ausweiten. Mit Bewegungsprofilen von Assets kann ausgewertet werden, ob die Metriken der Produktion erfüllt werden und mit welchen Stellschrauben sich Prozesse verbessern lassen. So stehen für die Analyse der OEE weitreichendere Datenbestände bereit. Mit diesen Daten lassen sich beispielsweise folgende Effekte erzielen:
In einem realen Szenario setzte ein Fertigungsunternehmen aus Japan das Ziel, die Produktivität zu erhöhen. Als Betreiber von 26 Fabriken weltweit, fünf Verarbeitungsanlagen sowie neun Forschungs- und Entwicklungszentren waren wirksame Instrumente gefragt, um historische Daten zu analysieren und Entwicklungen sowie Schwächen zu prognostizieren. Dazu wurden große Datenmengen aus den Produktionslinien strukturiert erfasst. Der eingesetzte Maschinenpark erzeugte Daten, die sich mit den meisten Analysetools nicht analysieren lassen, um sie geschäftlich zu nutzen. Dabei waren diese unstrukturierten und brachliegenden Daten aus Sicht der Produktivitätssteigerung und -optimierung sehr vielversprechend. Um das Potenzial in diesen Daten zu erschließen, rollte der japanische Fertiger Data-Mining-Lösungen in folgenden Bereichen aus: Qualitätsanalyse der hergestellten Produkte in Abhängigkeit von den Maschinenparametern, Fehleranalyse und Ursachen, die zu Ausfällen und Fehlern führen, Fehlervorhersagen, Planung und Terminierung optimaler Produktionsprozesse.
Belastbare Aussagen
Der Hersteller setzte zum Beispiel eine Ausschuss-Kalkulation auf der Grundlage verschiedener Maschinenmodelle auf. Auch die Dauer der Stillstandzeiten konnte für jeden Monat und jede Maschine in Abhängigkeit von verschiedenen Typen vorhergesagt werden. Die Prognosen wurden durch Validierung der Modelle auf der Grundlage historischer Daten spezifiziert. Dabei wurden auch Parameter wie Maschinengeschwindigkeit, Schichtsysteme, Teams und Material einbezogen. Für jede Maschine wurden unterschiedliche Methoden angewandt – für Produktionsmaschinen wurden die Daten pro Schicht aggregiert, für Verpackungsmaschinen pro Minute. Die Lösung wurde mit der Sprache R und der R Studio-Plattform entwickelt. Das Gesamtsystem ermöglichte es dem Unternehmen, Verluste zu reduzieren und die Produktionsprozesse auf kurze Stillstandzeiten zu trimmen. Die Big Data-Analysen ermöglichen es dem Unternehmen, fundierte Entscheidungen zu treffen, die sich erheblich auf die Kosten, Ausfallzeiten und somit Produktivität auswirken.
Sensordaten-gestütztes MOM ermöglicht zahlreiche Optimierungen auf Basis von Echtzeitdaten aus den Produktionsmaschinen. Berechnet werden etwa die Gesamteffektivität, die Einsatzfähigkeit der Maschinen, aber auch Ursachen von Maschinenstillständen und die Fehlerquellen bei Produktionsausschuss. So können einzelne Produktionsschritte überwacht werden. Dazu lassen sich Regeln definieren und entsprechende Alerts einstellen. Anhand der im Fertigungsprozess gesammelten Daten können Unternehmen ihre Produktion in allen Lebenszyklen und in Echtzeit optimieren. Ziel ist es hierbei, die Produktqualität durch Digitalisierung innerhalb der Fertigung zu erhöhen und mit entsprechender Integration den Ressourceneinsatz zu reduzieren. Damit zahlt ein zukunftsfähiges MES auf die Geschäftsbilanz eines Unternehmens nachhaltig ein. Daher sollten MOM-Projekte gerade in Krisenzeiten ziemlich weit oben auf der Prioritäten-Liste stehen.
Whitepaper Industrie 4.0 – Digitalisierung der Fertigung:tedo.link/B1yLVB Whitepaper Mensch vs. Maschine – Herausforderungen & Chancen für Industrie 4.0:tedo.link/aVaRZi
COSCOM – Digitalisierung im Shopfloor: Strukturierte Fertigungsdaten vom ERP bis an die Maschine
Digitalisierung klingt kompliziert? Wir machen‘s einfach.
MPDV Mikrolab GmbH – WE CREATE SMART FACTORIES
OT- und ICS-Cyberrisiken managen: Vollständige Sichtbarkeit, Sicherheit und Compliance
valantic – Produktionsplanung & -steuerung in Echtzeit mit der APS Software wayRTS
Warum sich Investitionsgüter-Hersteller für CPQ entscheiden
Weltweit führende APS-Technologie für alle industriellen Anforderungen
ANZEIGE
Whitepaper
Smart Factory Elements
Erste Schritte auf dem Weg zur Smart Factory - Wie Sie Daten und Abläufe richtig orchestrieren
Vom 4-Stufen-Modell zum Regelkreis
Erfahren Sie in unserem E-Book mit dem Fokus auf den Maschinenbau & Anlagenbau, wie Sie mit dem way APS-System Ihre Supply Chain planen und steuern können.
10 Fragen, die sich Fertigungsbetriebe bei der ERP-Auswahl stellen sollten
ANZEIGE
Videos
Erfolgreiche Asprova APS Einführung bei Panasonic, Hersteller von Komponenten für Autoelektronik
Erfolgreiche Asprova APS Einführung bei Danwood: Einer der größten Hersteller schlüsselfertiger Häuser in Euroapa.
Asprova User Day 2022 in Frankfurt
Erfolgreiche Asprova APS Einführung bei Strauss Café, zweitgrößter Kaffeehersteller in Polen
Mittelständische Unternehmen investieren selbst in schwierigen Zeiten in Microsoft-Technologien, weil sie überzeugt sind, dass ihre Mitarbeiterproduktivität steigt und sich ihre Kostenstruktur bessert. Microsoft hat mit dem Microsoft-Partner-Network ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. Für unsere Leser gibt die Microsoft-Partnerübersicht in Ausgabe Juli/August der IT&Production Tipps für die Suche nach einer geeigneten Branchen- oder Speziallösung im Bereich des produzierenden Gewerbes.
Auf der Suche nach Innovation, nach neuen Lösungen und der Abgrenzung zum Mitbewerb vernetzen sich zunehmend mehr Unternehmen mit externen Experten und Partnern. SAP hat mit dem SAP-Ecosystem ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. In der Maiausgabe der Fachzeitschrift IT&Production erhalten unsere Leser einen aktuellen Überblick zum SAP-Ecosystem im Bereich des produzierenden Gewerbes.
Immer mehr Anbieter von Maschinen, Automatisierungstechnik und Industriesoftware integrieren künstliche Intelligenz in ihre Produkte. Das ganze Potenzial spielen selbstlernende Systeme aber erst aus, wenn sie passgenau auf ihren Einsatz in Fertigung und Büro zugeschnitten wurden. Über beide Möglichkeiten, als Fertiger die Vorzüge von industrieller KI zu nutzen, geht es im regelmäßig aktualisierten Themenheft Künstliche Intelligenz.
Das Internet of Things verändert Produktwelten und die Vernetzung in der Fertigung gleichermaßen. Entstehende Ökosysteme laden zur einer neuen Form der Zusammenarbeit ein. Die Spezialausgabe IoT Wissen Kompakt informiert über die Technologie, Projektierung und Anbieter für die eigene Applikation, in- und außerhalb der Fabrik.
Um alle Potenziale eines MES umfassend ausnutzen zu können, beleuchten unsere Autoren in der Serie von MES Wissen Kompakt die erfolgskritischen Faktoren, um Fertigungsunternehmen präventiv zu steuern. Darüber hinaus präsentiert MES Wissen Kompakt ein breites Spektrum an Firmenportraits, Produkt- neuheiten und Dienst- leistungen im MES-Umfeld.
Ein Unternehmen, das sich mit der Auswahl eines ERP- Systems befasst, muss sich gleichsam mit einem viel- schichtigen Software-Markt und unklaren Interessen- lagen an interne Abwick- lungsprozesse auseinander- setzen. Guter Rat bei der Investitionsentscheidung ist teuer. ERP/CRM Wissen Kompakt unterstützt Sie bei der gezielten Investition in die IT-Infrastruktur.