Anzeige
Anzeige
Anzeige
Beitrag drucken

Sensordaten im MOM-System

IoT-gestützt zur Echtzeit-Optimierung

Das übergreifende Manufacturing Operations Management wird oft als Weiterentwicklung klassischer MES-Konzepte verstanden. Reichern Betreiber ihre MOM-Systeme mit Sensordaten an, werden vielfältige Optimierungen auf der Basis von Echtzeit-Daten möglich. Im Beispiel eines japanischen Produzenten waren es etwa die Reduzierung von Stillstandszeiten und Kosten.

 (Bild: Comarch Software und Beratung AG)

(Bild: Comarch Software und Beratung AG)

Viele Hersteller von Manufacturing Execution-Systems (MES) entwickeln ihre Lösungen aktuell in Richtung Manufacturing Operations Management (MOM) weiter. Denn im Zusammenspiel etwa mit ERP- und BI-Software, mit IoT- und KI-Applikationen ermöglichen MOM-Systemverbünde vielfältige Smart-Factory-Szenarien: Planung, Steuerung, Ausführung, Auswertung, Prognose und Optimierung der Produktion und Logistik. Ein MOM-System lässt sich als Hub integrieren, der ERP- und Maschinendaten aufnimmt. Die Arbeiten der Mitarbeiter, Software, Maschinen und Roboter werden transparent in Datenketten dokumentiert, oder erfasste Echtzeit-Daten mit Business Intelligence oder künstlicher Intelligenz analysiert, um daraus Handlungsempfehlungen abzuleiten. Daten und Dashboards helfen, Produktionen weiter zu optimieren.

Integrierte Fertigungsdaten

Für das MOM werden ERP-, IoT- und MES-Daten zusammengefasst, ausgewertet und verarbeitet. Das beschränkt sich nicht nur auf Daten der Anwendungsprogramme, sondern umfasst weitere integrierte Systeme etwa mit Sensoren- und Maschinendaten. Dabei wird häufig auf Logfiles von Maschinen zurückgegriffen, was gerade bei modernen Anlagen oft standardmäßig möglich ist – und sich bei älteren durch Retrofit nachrüsten lässt. Dabei sind IoT-integrierte Sensoren mit ihren Prozessdaten, Servicedaten und Ereignisdaten der Schlüssel zu Echtzeit-Applikationen. Bei der Sensorkommunikation gilt IO-Link als Standard für Datentransfers. IO-Link-Sensoren transportieren im Kommunikationsprotokoll zusätzliche Informationen und speichern Einstellungen zu Parametern, um ihren Austausch etwa im Fall von Beschädigungen zu erleichtern. Ihre Nachfolger können während des laufenden Betriebs alle gespeicherten Informationen übernehmen. In den Dashboards werden die ausgewerteten Daten übersichtlich visualisiert. So ergebt sich ein Bild, an welcher Schraube gedreht werden kann, um die Produktion und generell die OEE (Overall Equipment Effectiveness) zu verbessern. Prognosen zur ‚Mean Time to Repair‘ oder ‚Mean Time to Failure‘ bei den Maschine sind nach wenigen Klicks ersichtlich. Das aktuelle Wissen rund um Maschinenverfügbarkeiten hilft den Verantwortlichen, ihre Fertigung effizient zu steuern. Durch eine zusätzliche Integration von Asset Tracking lassen sich die Analysen ausweiten. Mit Bewegungsprofilen von Assets kann ausgewertet werden, ob die Metriken der Produktion erfüllt werden und mit welchen Stellschrauben sich Prozesse verbessern lassen. So stehen für die Analyse der OEE weitreichendere Datenbestände bereit. Mit diesen Daten lassen sich beispielsweise folgende Effekte erzielen:

  • • Fortlaufende Optimierung von Produktion und Logistik,
  • • Engpässe erkennen und vermeiden,
  • • Auslastung und Kapazitäten erhöhen,
  • • Ausschuss reduzieren,
  • • Materialverbrauch und Kosten senken.
KI als Gehirn der Fabrik: Wie können Produzenten mit Daten und ihre Analyse ihre Fertigung optimieren? (Bild: ©yoh4nn/gettyimages.com / Comarch Software und Beratung AG)

KI als Gehirn der Fabrik: Wie können Produzenten mit Daten und ihre Analyse ihre Fertigung optimieren? (Bild: ©yoh4nn/gettyimages.com / Comarch Software und Beratung AG)

Data Mining in der Praxis

In einem realen Szenario setzte ein Fertigungsunternehmen aus Japan das Ziel, die Produktivität zu erhöhen. Als Betreiber von 26 Fabriken weltweit, fünf Verarbeitungsanlagen sowie neun Forschungs- und Entwicklungszentren waren wirksame Instrumente gefragt, um historische Daten zu analysieren und Entwicklungen sowie Schwächen zu prognostizieren. Dazu wurden große Datenmengen aus den Produktionslinien strukturiert erfasst. Der eingesetzte Maschinenpark erzeugte Daten, die sich mit den meisten Analysetools nicht analysieren lassen, um sie geschäftlich zu nutzen. Dabei waren diese unstrukturierten und brachliegenden Daten aus Sicht der Produktivitätssteigerung und -optimierung sehr vielversprechend. Um das Potenzial in diesen Daten zu erschließen, rollte der japanische Fertiger Data-Mining-Lösungen in folgenden Bereichen aus: Qualitätsanalyse der hergestellten Produkte in Abhängigkeit von den Maschinenparametern, Fehleranalyse und Ursachen, die zu Ausfällen und Fehlern führen, Fehlervorhersagen, Planung und Terminierung optimaler Produktionsprozesse.

Belastbare Aussagen

Der Hersteller setzte zum Beispiel eine Ausschuss-Kalkulation auf der Grundlage verschiedener Maschinenmodelle auf. Auch die Dauer der Stillstandzeiten konnte für jeden Monat und jede Maschine in Abhängigkeit von verschiedenen Typen vorhergesagt werden. Die Prognosen wurden durch Validierung der Modelle auf der Grundlage historischer Daten spezifiziert. Dabei wurden auch Parameter wie Maschinengeschwindigkeit, Schichtsysteme, Teams und Material einbezogen. Für jede Maschine wurden unterschiedliche Methoden angewandt – für Produktionsmaschinen wurden die Daten pro Schicht aggregiert, für Verpackungsmaschinen pro Minute. Die Lösung wurde mit der Sprache R und der R Studio-Plattform entwickelt. Das Gesamtsystem ermöglichte es dem Unternehmen, Verluste zu reduzieren und die Produktionsprozesse auf kurze Stillstandzeiten zu trimmen. Die Big Data-Analysen ermöglichen es dem Unternehmen, fundierte Entscheidungen zu treffen, die sich erheblich auf die Kosten, Ausfallzeiten und somit Produktivität auswirken.

Datenhandling wird wichtiger

Sensordaten-gestütztes MOM ermöglicht zahlreiche Optimierungen auf Basis von Echtzeitdaten aus den Produktionsmaschinen. Berechnet werden etwa die Gesamteffektivität, die Einsatzfähigkeit der Maschinen, aber auch Ursachen von Maschinenstillständen und die Fehlerquellen bei Produktionsausschuss. So können einzelne Produktionsschritte überwacht werden. Dazu lassen sich Regeln definieren und entsprechende Alerts einstellen. Anhand der im Fertigungsprozess gesammelten Daten können Unternehmen ihre Produktion in allen Lebenszyklen und in Echtzeit optimieren. Ziel ist es hierbei, die Produktqualität durch Digitalisierung innerhalb der Fertigung zu erhöhen und mit entsprechender Integration den Ressourceneinsatz zu reduzieren. Damit zahlt ein zukunftsfähiges MES auf die Geschäftsbilanz eines Unternehmens nachhaltig ein. Daher sollten MOM-Projekte gerade in Krisenzeiten ziemlich weit oben auf der Prioritäten-Liste stehen.


Whitepaper Industrie 4.0 – Digitalisierung der Fertigung: tedo.link/B1yLVB
Whitepaper Mensch vs. Maschine – Herausforderungen & Chancen für Industrie 4.0: tedo.link/aVaRZi


Das könnte Sie auch interessieren:

Viele ERP-Lösungen wurden einst von Spezialisten entwickelt und danach nur noch angepasst, erweitert und mit Updates versorgt. Doch steigende Digitalisierungsanforderungen, schnellere Produkteinführungen sowie der Fachkräftemangel schrauben die Anforderungen in die Höhe. Könnte Low-Code-Softwareentwicklung die Lösung sein?‣ weiterlesen

Mit einem Anstieg von 1,6 Punkte im Januar liegt das IAB-Arbeitsmarktbarometer bei 102,9 Punkten und damit über der neutralen Marke von 100. Für die Arbeitsmarktforscher deutet dies auf positive Entwicklungen auf dem Arbeitsmarkt hin.‣ weiterlesen

Mit ProKI, einem Demonstrations- und Transfernetzwerk für künstliche Intelligenz (KI) in der Produktion, soll die Anwendung von KI bei kleinen und mittleren Unternehmen (KMU) weiter vorangetrieben werden.‣ weiterlesen

Wolfgang Boos hat zum Jahreswechsel die Geschäftsführung des FIR an der RWTH Aachen übernommen. Er tritt die Nachfolge von Volker Stich an.‣ weiterlesen

Mit den Produkten der Marke Smartblick will F&M Werkzeug und Maschinenbau gerade kleineren Unternehmen ermöglichen, Fertigungsprozesse anhand von Maschinendaten zu analysieren und zu optimieren. Jetzt hat die Firma ein Modul vorgestellt, das mit künstlicher Intelligenz 'on Edge' prädiktive Qualitätsanalysen erstellt, also Predictive Quality ermöglicht.‣ weiterlesen

Die GSG Genii Software Gruppe hat die Übernahme der Camos Software und Beratung GmbH bekanntgegeben, einem Software-Spezialisten im Bereich Configure Price Quote (CPQ).‣ weiterlesen

Lichttechnische Messungen gehören bei der Produktion von Displays zum Standard. Während der Entwicklung müssen jedoch auch sehr unterschiedliche Messungen, meist detaillierter als in der Serienfertigung, durchgeführt werden. Das Zusammenspiel von Displayansteuerung, Messequipment und Auswertung der Messwerte ist dabei oft zeitaufwendig und fehlerbehaftet. Eine voll- oder teilautomatisierte Messung kann die Arbeit vereinfachen.‣ weiterlesen

Mit einem Mix aus Liefer- und Projektgeschäft wappnet sich die Firma Unterfurtner aus Österreich gegen Marktschwankungen. Dabei verursachten die unterschiedlichen Prozesse der Geschäftsbereiche früher viel Aufwand, den das alte ERP-System kaum abfederte. Der Rollout von AMS.ERP änderte das, denn die Software ist auf solche Anforderungen zugeschnitten.‣ weiterlesen

ERP-Integrationen sind herausfordernde Projekte. Oft vergrößern überbordende Funktionswünsche das Risiko des Scheiterns. Eine Alternative ist die Ausarbeitung einer langfristigen ERP-Strategie samt Roadmap.‣ weiterlesen

Julia C. Arlinghaus, Nicole Dreyer-Langlet, Katharina Hölzle, Daniel Hug, Dieter Meuser und Björn Sautter verstärken den Forschungsbeirat Industrie 4.0. Das von Acatech koordinierte Gremium berät strategisch und unabhängig, insbesondere das Bundesministerium für Bildung und Forschung (BMBF).‣ weiterlesen

Softwareanbieter Sage stellt neue Werkzeuge bereit, die eine Brücke zwischen der eigenen Systemumgebung und der Azure-Cloud von Microsoft bilden sollen.‣ weiterlesen