Beitrag drucken

Sensordaten im MOM-System

IoT-gestützt zur Echtzeit-Optimierung

Das übergreifende Manufacturing Operations Management wird oft als Weiterentwicklung klassischer MES-Konzepte verstanden. Reichern Betreiber ihre MOM-Systeme mit Sensordaten an, werden vielfältige Optimierungen auf der Basis von Echtzeit-Daten möglich. Im Beispiel eines japanischen Produzenten waren es etwa die Reduzierung von Stillstandszeiten und Kosten.

 (Bild: Comarch Software und Beratung AG)

(Bild: Comarch Software und Beratung AG)

Viele Hersteller von Manufacturing Execution-Systems (MES) entwickeln ihre Lösungen aktuell in Richtung Manufacturing Operations Management (MOM) weiter. Denn im Zusammenspiel etwa mit ERP- und BI-Software, mit IoT- und KI-Applikationen ermöglichen MOM-Systemverbünde vielfältige Smart-Factory-Szenarien: Planung, Steuerung, Ausführung, Auswertung, Prognose und Optimierung der Produktion und Logistik. Ein MOM-System lässt sich als Hub integrieren, der ERP- und Maschinendaten aufnimmt. Die Arbeiten der Mitarbeiter, Software, Maschinen und Roboter werden transparent in Datenketten dokumentiert, oder erfasste Echtzeit-Daten mit Business Intelligence oder künstlicher Intelligenz analysiert, um daraus Handlungsempfehlungen abzuleiten. Daten und Dashboards helfen, Produktionen weiter zu optimieren.

Integrierte Fertigungsdaten

Für das MOM werden ERP-, IoT- und MES-Daten zusammengefasst, ausgewertet und verarbeitet. Das beschränkt sich nicht nur auf Daten der Anwendungsprogramme, sondern umfasst weitere integrierte Systeme etwa mit Sensoren- und Maschinendaten. Dabei wird häufig auf Logfiles von Maschinen zurückgegriffen, was gerade bei modernen Anlagen oft standardmäßig möglich ist – und sich bei älteren durch Retrofit nachrüsten lässt. Dabei sind IoT-integrierte Sensoren mit ihren Prozessdaten, Servicedaten und Ereignisdaten der Schlüssel zu Echtzeit-Applikationen. Bei der Sensorkommunikation gilt IO-Link als Standard für Datentransfers. IO-Link-Sensoren transportieren im Kommunikationsprotokoll zusätzliche Informationen und speichern Einstellungen zu Parametern, um ihren Austausch etwa im Fall von Beschädigungen zu erleichtern. Ihre Nachfolger können während des laufenden Betriebs alle gespeicherten Informationen übernehmen. In den Dashboards werden die ausgewerteten Daten übersichtlich visualisiert. So ergebt sich ein Bild, an welcher Schraube gedreht werden kann, um die Produktion und generell die OEE (Overall Equipment Effectiveness) zu verbessern. Prognosen zur ‚Mean Time to Repair‘ oder ‚Mean Time to Failure‘ bei den Maschine sind nach wenigen Klicks ersichtlich. Das aktuelle Wissen rund um Maschinenverfügbarkeiten hilft den Verantwortlichen, ihre Fertigung effizient zu steuern. Durch eine zusätzliche Integration von Asset Tracking lassen sich die Analysen ausweiten. Mit Bewegungsprofilen von Assets kann ausgewertet werden, ob die Metriken der Produktion erfüllt werden und mit welchen Stellschrauben sich Prozesse verbessern lassen. So stehen für die Analyse der OEE weitreichendere Datenbestände bereit. Mit diesen Daten lassen sich beispielsweise folgende Effekte erzielen:

  • • Fortlaufende Optimierung von Produktion und Logistik,
  • • Engpässe erkennen und vermeiden,
  • • Auslastung und Kapazitäten erhöhen,
  • • Ausschuss reduzieren,
  • • Materialverbrauch und Kosten senken.
KI als Gehirn der Fabrik: Wie können Produzenten mit Daten und ihre Analyse ihre Fertigung optimieren? (Bild: ©yoh4nn/gettyimages.com / Comarch Software und Beratung AG)

KI als Gehirn der Fabrik: Wie können Produzenten mit Daten und ihre Analyse ihre Fertigung optimieren? (Bild: ©yoh4nn/gettyimages.com / Comarch Software und Beratung AG)

Data Mining in der Praxis

In einem realen Szenario setzte ein Fertigungsunternehmen aus Japan das Ziel, die Produktivität zu erhöhen. Als Betreiber von 26 Fabriken weltweit, fünf Verarbeitungsanlagen sowie neun Forschungs- und Entwicklungszentren waren wirksame Instrumente gefragt, um historische Daten zu analysieren und Entwicklungen sowie Schwächen zu prognostizieren. Dazu wurden große Datenmengen aus den Produktionslinien strukturiert erfasst. Der eingesetzte Maschinenpark erzeugte Daten, die sich mit den meisten Analysetools nicht analysieren lassen, um sie geschäftlich zu nutzen. Dabei waren diese unstrukturierten und brachliegenden Daten aus Sicht der Produktivitätssteigerung und -optimierung sehr vielversprechend. Um das Potenzial in diesen Daten zu erschließen, rollte der japanische Fertiger Data-Mining-Lösungen in folgenden Bereichen aus: Qualitätsanalyse der hergestellten Produkte in Abhängigkeit von den Maschinenparametern, Fehleranalyse und Ursachen, die zu Ausfällen und Fehlern führen, Fehlervorhersagen, Planung und Terminierung optimaler Produktionsprozesse.

Belastbare Aussagen

Der Hersteller setzte zum Beispiel eine Ausschuss-Kalkulation auf der Grundlage verschiedener Maschinenmodelle auf. Auch die Dauer der Stillstandzeiten konnte für jeden Monat und jede Maschine in Abhängigkeit von verschiedenen Typen vorhergesagt werden. Die Prognosen wurden durch Validierung der Modelle auf der Grundlage historischer Daten spezifiziert. Dabei wurden auch Parameter wie Maschinengeschwindigkeit, Schichtsysteme, Teams und Material einbezogen. Für jede Maschine wurden unterschiedliche Methoden angewandt – für Produktionsmaschinen wurden die Daten pro Schicht aggregiert, für Verpackungsmaschinen pro Minute. Die Lösung wurde mit der Sprache R und der R Studio-Plattform entwickelt. Das Gesamtsystem ermöglichte es dem Unternehmen, Verluste zu reduzieren und die Produktionsprozesse auf kurze Stillstandzeiten zu trimmen. Die Big Data-Analysen ermöglichen es dem Unternehmen, fundierte Entscheidungen zu treffen, die sich erheblich auf die Kosten, Ausfallzeiten und somit Produktivität auswirken.

Datenhandling wird wichtiger

Sensordaten-gestütztes MOM ermöglicht zahlreiche Optimierungen auf Basis von Echtzeitdaten aus den Produktionsmaschinen. Berechnet werden etwa die Gesamteffektivität, die Einsatzfähigkeit der Maschinen, aber auch Ursachen von Maschinenstillständen und die Fehlerquellen bei Produktionsausschuss. So können einzelne Produktionsschritte überwacht werden. Dazu lassen sich Regeln definieren und entsprechende Alerts einstellen. Anhand der im Fertigungsprozess gesammelten Daten können Unternehmen ihre Produktion in allen Lebenszyklen und in Echtzeit optimieren. Ziel ist es hierbei, die Produktqualität durch Digitalisierung innerhalb der Fertigung zu erhöhen und mit entsprechender Integration den Ressourceneinsatz zu reduzieren. Damit zahlt ein zukunftsfähiges MES auf die Geschäftsbilanz eines Unternehmens nachhaltig ein. Daher sollten MOM-Projekte gerade in Krisenzeiten ziemlich weit oben auf der Prioritäten-Liste stehen.


Whitepaper Industrie 4.0 – Digitalisierung der Fertigung: tedo.link/B1yLVB
Whitepaper Mensch vs. Maschine – Herausforderungen & Chancen für Industrie 4.0: tedo.link/aVaRZi


Das könnte Sie auch interessieren:

„In den kommenden Jahren wird durch Demografie, Digitalisierung und Klimaschutz der Bedarf an Beschäftigten in Ingenieur- und Informatikberufen deutlich zunehmen“, sagt VDI-Arbeitsmarktexperte Ingo Rauhut. Der Ingenieurmonitor für das zweite Quartal 2023 zeigt einen starken Engpass bei den Ingenieurberufen Energie- und Elektrotechnik.‣ weiterlesen

Eine Analyse der Softwarevergleichsplattform SoftGuide hat ergeben, dass in den meisten Fällen Unternehmensinhaber bzw. Vorstände zu neuer Software recherchieren. Die IT-Abteilung ist laut Analyse seltener involviert.‣ weiterlesen

B&R zieht um. Das Unternehmen verlegt den Hauptsitz nach Friedberg zum Deutschland-Sitz der Robotics-Division von ABB. Wie B&R mitteilt, sollen so stärkere Synergien geschaffen werden.‣ weiterlesen

Mit der ME Industrial Simulation Software Corporation geht ein Joint Venture von Mitsubishi Electric und Visual Components an den Start, das sich der Entwicklung sowie dem Vertrieb von 3D-Simulatoren widmen soll.‣ weiterlesen

Das Bundesarbeitsgericht hat 2022 die Pflicht zur Einführung eines Zeiterfassungssystems bestätigt und damit einen grundlegenden Veränderungsprozess in der Arbeitswelt angestoßen. Viele Unternehmen stehen jedoch noch am Anfang bei der Umsetzung dieser Vorgaben. Die digitale Zeiterfassung bietet hier Potenzial.‣ weiterlesen