Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Machine Learning in der Fertigungs-IT

Manufacturing Analytics und künstliche Intelligenz

Die Bandbreite an Analyseanwendungen reicht von klassischen Reports und Kennzahlen über Self Service Analytics bis hin zu künstlicher Intelligenz. Bei aller Vielfalt sollte der Zweck nicht aus dem Fokus geraten: transparenter und effizienter fertigen zu können. Zumal immer wieder neue Manufacturing-Analytics-Instrumente entwickelt werden.

Klassische Analytics-Anwendungen haben noch lange nicht ausgedient: Das Maschinenzeitprofil im MES Hydra von MPDV. (Bild: ©nd3000/stock.adobe.com / MPDV Mikrolab GmbH)

Klassische Analytics-Anwendungen haben noch lange nicht ausgedient: Das Maschinenzeitprofil im MES Hydra von MPDV. (Bild: ©nd3000/stock.adobe.com / MPDV Mikrolab GmbH)

Um wettbewerbsfähig produzieren zu können, brauchen Fertigungsunternehmen bestmögliche Transparenz. Denn nur wer weiß, wie es im Shopfloor gerade läuft, kann an den geeigneten Stellschrauben drehen und die Prozesse optimieren. Über die Jahre haben sich Werkzeuge wie Kennzahlen und deren Darstellung in Dashboards als nützlich herauskristallisiert. Heutzutage braucht es aber deutlich mehr – z.B. hält künstliche Intelligenz immer häufiger Einzug in die Fabrikhallen.

Klassische Anwendungen

Bisher gehören beispielsweise Auswertungen, Dashboards und Reports genauso wie Kennzahlen zu den gängigen Analytics-Werkzeugen. Viele dieser Anwendungen sind Bestandteil eines Manufacturing Execution Systems (MES) wie Hydra von MPDV. Beliebte Auswertungen sind beispielsweise die Ausschussstatistik, das Maschinenzeitprofil, der OEE-Report oder auch die klassische Regelkarte in der Qualitätssicherung. In allen Fällen entsteht der Mehrwert dadurch, dass Hydra Informationen darstellt, die aus erfassten Rohdaten berechnet bzw. aggregiert wurden. Im Sinne einer ‚Rückspiegelbetrachtung‘ spricht man hier auch von Descriptive Analytics.

Self Service Analytics

Oft gehen die Anforderungen von Fertigungsunternehmen über standardisierte Kennzahlen und vorgefertigte Auswertungen hinaus. Insbesondere wenn größere Datenmengen zur Analyse zur Verfügung stehen, bietet es sich an, auf Methoden des Self Service Analytics zurückzugreifen, um so eine individuelle Ursachenforschung zu betreiben. Der Klassiker hierfür ist die Pivot-Tabelle, die viele aus Excel kennen und die auch im MES Hydra zum Einsatz kommt. Ein Praxisbeispiel ist die Fehlerschwerpunktanalyse. Die flexible Anordnung von Datenfeldern in Zeilen und Spalten sowie der Einsatz von Filtern und Korrelationsfunktionen ermöglichen eine Eingrenzung von Daten auf relevante Werte. So kann jeder Anwender selbst entscheiden, wie seine Auswertung aussieht – er bedient sich im wahrsten Sinne des Wortes selbst und nutzt die angebotenen Werkzeuge, um an sein Ziel zu gelangen. Sollen Daten aus unterschiedlichen Quellen miteinander korreliert werden, lässt sich das MES-Cockpit von MPDV nutzen, welches zur Visualisierung auf Qlik-Technologie zurückreift.

Advanced Analytics

Waren die zuvor beschriebenen Analysemethoden eher vergangenheitsbezogen, so gewinnen Echtzeitanwendungen immer mehr an Bedeutung. In Zeiten von Industrie 4.0 hört man in diesem Zusammenhang häufig Schlagworte wie künstliche Intelligenz (KI) oder Machine Learning. Dahinter verbergen sich Algorithmen und Methoden, die Daten in einer Weise analysieren, die dem menschlichen Verstand nachempfunden ist. Beispielsweise dienen große Datenmengen dazu, daraus ein Modell zu generieren, was die realen Abläufe hinreichend abbildet. Auf Basis dieses Modells können dann Abweichungen besser erkannt und eingeordnet werden. In den letzten Jahren konnte man in diesem Umfeld viel von Predictive Maintenance hören – also einer Möglichkeit, Störungen und Ausfälle von Maschinen vorherzusagen. Eine solche Anwendung kann auf modellbasierten Analysemethoden funktionieren. Ein anderes Beispiel für Advanced Analytics ist die zur Hannover Messe vorgestellte Lösung Predictive Quality von MPDV.

Qualität vorhersagen

Grundannahme für die Vorhersage der Qualität ist, dass es auch dann zu Ausschuss oder Nacharbeit kommen kann, wenn sich alle Prozessparameter innerhalb der jeweils gültigen Toleranzen bewegen. Grund dafür sind komplexe Zusammenhänge und Wechselwirkungen, die oft auf die Fertigungstechnologie zurückzuführen sind. Die Anwendung Predictive Quality berücksichtigt diese Zusammenhänge und gibt Mitarbeitern in der Fertigung die Möglichkeit, sofort zu sehen, ob der aktuell produzierte Artikel Ausschuss oder ein gutes Teil ist – und das auch noch unter Angabe der Eintrittswahrscheinlichkeit. Die Vorhersage der Qualität und die Berechnung der Wahrscheinlichkeit basiert auf einer modellbasierten Echtzeitanalyse (Advanced Analytics) von Prozesswerten. Im Vorfeld dazu muss ein geeignetes Modell generiert und im Idealfall auch kontinuierlich verifiziert und weiterentwickelt werden. Künstliche Intelligenz spiel in beiden Fällen eine wesentliche Rolle.

Smart Factory Elements
Das Modell Smart Factory Elements von MPDV ordnet die Abläufe einer modernen Fabrik in fünf Elemente ein, die einen Regelkreis bilden. Dieser sieht vor, dass auf Basis von Vorgaben unterschiedlicher Quellen die Fertigung geplant (Planning & Scheduling) und diese Planung dann umgesetzt (Execution) wird. Die dabei erfassten Daten werden analysiert (Analytics), um daraus unter anderem Vorhersagen abzuleiten (Prediction), die zusammen mit anderen Erkenntnissen wiederum in die Planung einfließen können. Das Industrial Internet of Things (IIoT) unterstützt diesen Kreislauf durch die Erfassung und Bereitstellung von Daten. Das Modell erweitert den Horizont bisheriger Fertigungs-IT wie beispielsweise MES um die Aufgabenfelder Analytics und Prediction, um die es in diesem Beitrag geht. Auch weiterhin lassen sich viele werksnahe Aufgaben hervorragend mit einem MES wie Hydra von MPDV abbilden. Mehr Infos unter: http://mpdv.info/faitpansfe.


Das könnte Sie auch interessieren:

Mit einem Plus von 1,9 Punkten verzeichnet das Geschäftsklima der Digitalbranche im Januar einen erneuten Anstieg und liegt nun bei 18,5 Punkten. Erstmals seit Sommer 2022 liegen zudem die Geschäftserwartungen im positiven Bereich.‣ weiterlesen

Ob zur Remote-Unterstützung der Mitarbeiter vor Ort, zur Schulung und technischen Einweisung neuen Personals oder bei der Umplanung von Produktionsstraßen - fotorealistische digitale Zwillinge können Unternehmen vielfältig unterstützen.‣ weiterlesen

Viele ERP-Lösungen wurden einst von Spezialisten entwickelt und danach nur noch angepasst, erweitert und mit Updates versorgt. Doch steigende Digitalisierungsanforderungen, schnellere Produkteinführungen sowie der Fachkräftemangel schrauben die Anforderungen in die Höhe. Könnte Low-Code-Softwareentwicklung die Lösung sein?‣ weiterlesen

Mit einem Anstieg von 1,6 Punkten im Januar liegt das IAB-Arbeitsmarktbarometer bei 102,9 Punkten und damit über der neutralen Marke von 100. Für die Arbeitsmarktforscher deutet dies auf positive Entwicklungen auf dem Arbeitsmarkt hin.‣ weiterlesen

Mit ProKI, einem Demonstrations- und Transfernetzwerk für künstliche Intelligenz (KI) in der Produktion, soll die Anwendung von KI bei kleinen und mittleren Unternehmen (KMU) weiter vorangetrieben werden.‣ weiterlesen

Wolfgang Boos hat zum Jahreswechsel die Geschäftsführung des FIR an der RWTH Aachen übernommen. Er tritt die Nachfolge von Volker Stich an.‣ weiterlesen

Mit den Produkten der Marke Smartblick will F&M Werkzeug und Maschinenbau gerade kleineren Unternehmen ermöglichen, Fertigungsprozesse anhand von Maschinendaten zu analysieren und zu optimieren. Jetzt hat die Firma ein Modul vorgestellt, das mit künstlicher Intelligenz 'on Edge' prädiktive Qualitätsanalysen erstellt, also Predictive Quality ermöglicht.‣ weiterlesen

Die GSG Genii Software Gruppe hat die Übernahme der Camos Software und Beratung GmbH bekanntgegeben, einem Software-Spezialisten im Bereich Configure Price Quote (CPQ).‣ weiterlesen

Lichttechnische Messungen gehören bei der Produktion von Displays zum Standard. Während der Entwicklung müssen jedoch auch sehr unterschiedliche Messungen, meist detaillierter als in der Serienfertigung, durchgeführt werden. Das Zusammenspiel von Displayansteuerung, Messequipment und Auswertung der Messwerte ist dabei oft zeitaufwendig und fehlerbehaftet. Eine voll- oder teilautomatisierte Messung kann die Arbeit vereinfachen.‣ weiterlesen

Mit einem Mix aus Liefer- und Projektgeschäft wappnet sich die Firma Unterfurtner aus Österreich gegen Marktschwankungen. Dabei verursachten die unterschiedlichen Prozesse der Geschäftsbereiche früher viel Aufwand, den das alte ERP-System kaum abfederte. Der Rollout von AMS.ERP änderte das, denn die Software ist auf solche Anforderungen zugeschnitten.‣ weiterlesen