Anzeige
Anzeige
Beitrag drucken

Künstliche Intelligenz im MES

Implizites Planungswissen per KI integriert

Trotz IT-Unterstützung müssen Schichtleiter und Fertigungsplaner immer wieder in laufende Produktionsprozesse eingreifen. Künstliche Intelligenz (KI) hilft dabei, die Eingriffe zu verringern und die Produktionsqualität zu erhöhen.

 (Bild: ©sdecoret / Fotolia.com)

(Bild: ©sdecoret / Fotolia.com)

Die Ursachen für die steigenden Ansprüche an eine flexible Produktion steigen zum einen durch die Individualisierung der Kundenwünsche, die zu einer erhöhten Produktvarianz führt. Zum anderen sorgen hohe Rohstoffkosten und der zunehmende Wettbewerbsdruck dafür, dass produzierende Unternehmen eine möglichst hohe Auslastung ihrer Maschinen und Anlagen erreichen und Ausschüsse reduzieren müssen. Doch trotz weitgehender Automatisierung können die Anforderungen einer dynamischen Multivariantenproduktion nicht erfüllt werden. ERP- und Manufacturing-Execution-Systeme (MES) in der Produktion sind daher kaum verzichtbar. Diese Systeme decken jedoch die Produktion nicht vollständig digital ab: Kann beispielsweise ein Fertigungsauftrag alternativ auf mehreren Maschinen eingeplant werden, muss der Planer dies entscheiden. Das System entwickelt auf Basis der vorhandenen Daten einen Fertigungsplan. Der Planer greift jedoch immer wieder ein, weil er Informationen hat, die dem System nicht vorliegen. Mit der Zeit entwickelt der Planer Präferenzen, sogenanntes implizites Wissen, über das nur er verfügt – nicht aber das Planungssystem.

Grenzen klassischer Systeme

Auch wenn ERP- und MES-Lösungen die Prozessintegration entlang von Wertschöpfungsketten und Fertigungsprozessen (horizontale und vertikale Datenintegration) immer weiter vorantreiben und so versuchen, implitzites Wissen zu verringern, stoßen klassische Planungssysteme oft an ihre Grenzen, denn manuelle Änderungen innerhalb der Fertigungsplanung werden außerhalb des Systems vorgenommen und haben damit keinen Einfluss auf die zukünftige Einplanung durch das Planungssystem.

Komplexe Systeme

Entscheidet also der Planer aus einem speziellen Grund, einen Auftrag auf eine andere Maschine zu legen, so muss er diese Änderung jedes Mal vornehmen, wenn bei zukünftigen Aufträgen die gleichen Gründe auftreten. Klassische Analysemethoden erkennen zwar durch die Auswertung historischer Daten die Änderung, nicht aber die Gründe für diese Entscheidung – ihre Systemlogik ist nicht dafür geeignet, die Entscheidung zu prognostizieren. Der Planer muss also in das Planungssystem eingreifen. Da ERP- und MES-Lösungen aber mit steigender Datenmenge und zunehmender Integration in weitere Unternehmensbereiche immer komplexer werden, kann der Planer diese Komplexität nur mit sehr hohem Aufwand nachvollziehen. Manuelle Eingriffe zur Änderung eines Fertigungsplans werden somit immer schwieriger und haben oft Auswirkungen auf Bereiche, die Fertigungsplaner und -steuerer nur aufwendig mitbetrachten können. An dieser Stelle kommt künstliche Intelligenz bzw. maschinelles Lernen ins Spiel.

Assistenzbasierte Fertigungsplanung

Doch wie sieht eine assistenzbasierte Fertigungsplanung und -steuerung auf KI-Basis aus? Vereinfacht gesagt, lernt die KI aufgrund der Eingriffe durch den Planer, welche Änderungen er in Zukunft vornehmen wird. Die KI unterbreitet ihm entsprechende Vorschläge für die Planung bzw. Steuerung. Aus der Entscheidung des Planers, diesen Vorschlag zu akzeptieren oder zu ändern, lernt die KI. Des Weiteren kann sie den Planer bei seiner Eingabe auf unplausible Konstellationen aufmerksam machen. Planung und Steuerung werden so präziser und verlässlicher gegenüber einer Entscheidung, die auf der Auswertung historischer Daten basiert. Der Planer behält dabei die Entscheidungshoheit. Er kann mit Hilfe sogenannter Exception Rules die KI übersteuern. Die KI ergänzt den Planer, indem sie den Aufwand für manuelle Eingriffe und das damit verbundene Risiko für Planungsfehler reduziert. Es handelt sich also um ein Komplementär-, nicht um ein Defizitärmodell. Nicht der Planer, sondern immer wiederkehrende Planungskorrekturen gehören in einer Produktion mit intelligenten Assistenzsystemen der Vergangenheit an. Da durch maschinelles Lernen das implizite Wissen sukzessive Teil des Systems wird, geht zudem der Zugriff auf dieses Wissen nicht verloren, wenn der entsprechende Mitarbeiter ausfällt oder aus dem Unternehmen ausscheidet.

Für volatile Werksumgebungen

Der Einsatz von KI-Assistenzsystemen ist insbesondere in Produktionen mit hohem Volatilitätspotenzial sinnvoll, in denen ein Marktumfeld mit hoher Dynamik permanente Schwankungen und Änderungen bedingt. Ein Beispiel ist die Print&Packaging-Industrie, in der produzierende Unternehmen für viele Abnehmer sehr unterschiedliche Produkte fertigen. Die Becos GmbH aus Stuttgart ist mit ihren MES- und IoT-Lösungen u.a. in dieser Branchen aktiv und entwickelt KI-basierte Anwendungen für produzierende Unternehmen. In einem konkreten Einsatz einer assistenzbasierten Fertigungsplanung und -steuerung bei einem Verpackungshersteller erreichte das Unternehmen bei einer automatischen Einplanungsquote von über 90 Prozent eine Planungszeitreduktion von bis zu 30 Prozent. Unter den Bedingungen einer steigenden Fertigungsdynamik und eines zunehmenden Wettbewerbsdrucks ist der Einsatz KI-basierter Assistenzsysteme nicht nur eine Frage der Wirtschaftlichkeit, sondern auch der Zukunftsfähigkeit eines jeden produzierenden Unternehmens.


Das könnte Sie auch interessieren:

ISPE, APV, Concept Heidelberg und die VDI/VDE Gesellschaft Mess- und Automatisierungstechnik richten am 30. November bis zum 1. Dezember 2021 im Dorint Kongresshotel in Mannheim die 14. Offizielle GAMP 5 Konferenz aus.‣ weiterlesen

Die Simulation am digitalen Zwilling macht die Inbetriebnahme von Anlagen und Maschinen mit automatisierten Bewegungen sicherer. Fehler fallen früher auf und können behoben werden, bevor die Anlage aufgebaut ist. So lassen sich Schäden und Verzögerungen vermeiden. Auch als Schulungstool für Bediener und Programmierer ist die digitale Maschine hilfreich.‣ weiterlesen

Die Corona-Pandemie beeinträchtigt die Lieferketten und erhöht somit den Druck auf die Geschwindigkeit von Digitalisierungsprojekten. Für Enterprise-Ressource-Planning(ERP-)Systeme bedeutet das einen Boost. Dabei führt der Weg hin zu einem 'Best of Platform'-Ansatz.‣ weiterlesen

Schnaithmann Maschinenbau hat die Web-Applikation EasyGo vorgestellt. Das browserbasierte Tool soll die Anlagenplanung und -konzeption vereinfachen und beschleunigen.‣ weiterlesen

Die Konsolidierung großer Datenmengen, um damit KI-Anwendungen für Produktionsprozesse zu entwickeln, fällt vielen Unternehmen noch schwer. Im Projekt ExDRa sollen Lösungen entstehen, die diesen Prozess spürbar vereinfachen. Dieser Text ist der Auftakt zu einer Artikelreihe zu den produktionsbezogenen Initiativen des vom BMWi geförderten Technologieprogramms Smarte Datenwirtschaft.‣ weiterlesen

Rockwell Automation hat einen neuen CTO. Zum 1 Juli hat Cyril Perducat das Amt des Chief Technology Officers übernommen.‣ weiterlesen

Um schon vor der Lieferung einer Werkzeugmaschine Einblicke in ihre Leistungsfähigkeit zu ermöglichen, arbeitet die Schweizer Starrag-Gruppe mit der NC-Simulationslösung Vericut. Anhand der ermittelten Daten lassen sich die für später angedachten NC-Programme feinjustieren, noch bevor die Maschine ihr Werk verlässt.‣ weiterlesen

Viele Firmen befassen sich gerade mit der Neuausrichtung Ihrer Lieferketten. Dabei bietet das europäische Estland auf einer Fläche so groß wie Niedersachsen beispielhafte Digitalisierungs- und Fertigungsexpertise. Zusammen mit dem vergleichsweise einfachen Marktzugang, der räumlichen Nähe und dem Rahmen der EU-Gesetzgebung dürfte das kleine Land ein zunehmend wichtiger Partner der hiesigen Industrie bei ihrer digitalen Transformation werden.‣ weiterlesen

Änderungen in Personalzeitwirtschaft und Entgeltabrechnung gehören im HR-Management zu den oft ungeliebten, aber dennoch regelmäßig anstehenden Aufgaben. Jede Änderung in den Betriebsvereinbarungen, Gesetzesnovellen oder tarifliche Neuregelungen verlangen die Überarbeitung von Schemen und Regeln in den Personalabteilungen. Und auch Adhoc-Änderungen müssen unmittelbar umgesetzt werden.‣ weiterlesen

Signalsäulen sind eine beliebte Lösung, um schnell und günstig Informationen zu den Betriebszuständen der Maschinen und Anlagen in einer Fabrik anzuzeigen.‣ weiterlesen

ERP-Branchenlösungen sollen Standardgeschäftsprozesse und Spezialfunktionen unter einen Hut bringen. Innovachem für mittelständische Chemieunternehmen verbindet den Systemkern aus Basis von SAP S4/Hana etwa mit Modulen zur Rezepturentwicklung und Compliance-Prüfung. Das erspart so manche Programmierarbeit und Schnittstellenpflege.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige