Anzeige
Anzeige
Anzeige
Beitrag drucken

Künstliche Intelligenz im MES

Implizites Planungswissen per KI integriert

Trotz IT-Unterstützung müssen Schichtleiter und Fertigungsplaner immer wieder in laufende Produktionsprozesse eingreifen. Künstliche Intelligenz (KI) hilft dabei, die Eingriffe zu verringern und die Produktionsqualität zu erhöhen.

 (Bild: ©sdecoret / Fotolia.com)

(Bild: ©sdecoret / Fotolia.com)

Die Ursachen für die steigenden Ansprüche an eine flexible Produktion steigen zum einen durch die Individualisierung der Kundenwünsche, die zu einer erhöhten Produktvarianz führt. Zum anderen sorgen hohe Rohstoffkosten und der zunehmende Wettbewerbsdruck dafür, dass produzierende Unternehmen eine möglichst hohe Auslastung ihrer Maschinen und Anlagen erreichen und Ausschüsse reduzieren müssen. Doch trotz weitgehender Automatisierung können die Anforderungen einer dynamischen Multivariantenproduktion nicht erfüllt werden. ERP- und Manufacturing-Execution-Systeme (MES) in der Produktion sind daher kaum verzichtbar. Diese Systeme decken jedoch die Produktion nicht vollständig digital ab: Kann beispielsweise ein Fertigungsauftrag alternativ auf mehreren Maschinen eingeplant werden, muss der Planer dies entscheiden. Das System entwickelt auf Basis der vorhandenen Daten einen Fertigungsplan. Der Planer greift jedoch immer wieder ein, weil er Informationen hat, die dem System nicht vorliegen. Mit der Zeit entwickelt der Planer Präferenzen, sogenanntes implizites Wissen, über das nur er verfügt – nicht aber das Planungssystem.

Grenzen klassischer Systeme

Auch wenn ERP- und MES-Lösungen die Prozessintegration entlang von Wertschöpfungsketten und Fertigungsprozessen (horizontale und vertikale Datenintegration) immer weiter vorantreiben und so versuchen, implitzites Wissen zu verringern, stoßen klassische Planungssysteme oft an ihre Grenzen, denn manuelle Änderungen innerhalb der Fertigungsplanung werden außerhalb des Systems vorgenommen und haben damit keinen Einfluss auf die zukünftige Einplanung durch das Planungssystem.

Komplexe Systeme

Entscheidet also der Planer aus einem speziellen Grund, einen Auftrag auf eine andere Maschine zu legen, so muss er diese Änderung jedes Mal vornehmen, wenn bei zukünftigen Aufträgen die gleichen Gründe auftreten. Klassische Analysemethoden erkennen zwar durch die Auswertung historischer Daten die Änderung, nicht aber die Gründe für diese Entscheidung – ihre Systemlogik ist nicht dafür geeignet, die Entscheidung zu prognostizieren. Der Planer muss also in das Planungssystem eingreifen. Da ERP- und MES-Lösungen aber mit steigender Datenmenge und zunehmender Integration in weitere Unternehmensbereiche immer komplexer werden, kann der Planer diese Komplexität nur mit sehr hohem Aufwand nachvollziehen. Manuelle Eingriffe zur Änderung eines Fertigungsplans werden somit immer schwieriger und haben oft Auswirkungen auf Bereiche, die Fertigungsplaner und -steuerer nur aufwendig mitbetrachten können. An dieser Stelle kommt künstliche Intelligenz bzw. maschinelles Lernen ins Spiel.

Assistenzbasierte Fertigungsplanung

Doch wie sieht eine assistenzbasierte Fertigungsplanung und -steuerung auf KI-Basis aus? Vereinfacht gesagt, lernt die KI aufgrund der Eingriffe durch den Planer, welche Änderungen er in Zukunft vornehmen wird. Die KI unterbreitet ihm entsprechende Vorschläge für die Planung bzw. Steuerung. Aus der Entscheidung des Planers, diesen Vorschlag zu akzeptieren oder zu ändern, lernt die KI. Des Weiteren kann sie den Planer bei seiner Eingabe auf unplausible Konstellationen aufmerksam machen. Planung und Steuerung werden so präziser und verlässlicher gegenüber einer Entscheidung, die auf der Auswertung historischer Daten basiert. Der Planer behält dabei die Entscheidungshoheit. Er kann mit Hilfe sogenannter Exception Rules die KI übersteuern. Die KI ergänzt den Planer, indem sie den Aufwand für manuelle Eingriffe und das damit verbundene Risiko für Planungsfehler reduziert. Es handelt sich also um ein Komplementär-, nicht um ein Defizitärmodell. Nicht der Planer, sondern immer wiederkehrende Planungskorrekturen gehören in einer Produktion mit intelligenten Assistenzsystemen der Vergangenheit an. Da durch maschinelles Lernen das implizite Wissen sukzessive Teil des Systems wird, geht zudem der Zugriff auf dieses Wissen nicht verloren, wenn der entsprechende Mitarbeiter ausfällt oder aus dem Unternehmen ausscheidet.

ANZEIGE

Für volatile Werksumgebungen

Der Einsatz von KI-Assistenzsystemen ist insbesondere in Produktionen mit hohem Volatilitätspotenzial sinnvoll, in denen ein Marktumfeld mit hoher Dynamik permanente Schwankungen und Änderungen bedingt. Ein Beispiel ist die Print&Packaging-Industrie, in der produzierende Unternehmen für viele Abnehmer sehr unterschiedliche Produkte fertigen. Die Becos GmbH aus Stuttgart ist mit ihren MES- und IoT-Lösungen u.a. in dieser Branchen aktiv und entwickelt KI-basierte Anwendungen für produzierende Unternehmen. In einem konkreten Einsatz einer assistenzbasierten Fertigungsplanung und -steuerung bei einem Verpackungshersteller erreichte das Unternehmen bei einer automatischen Einplanungsquote von über 90 Prozent eine Planungszeitreduktion von bis zu 30 Prozent. Unter den Bedingungen einer steigenden Fertigungsdynamik und eines zunehmenden Wettbewerbsdrucks ist der Einsatz KI-basierter Assistenzsysteme nicht nur eine Frage der Wirtschaftlichkeit, sondern auch der Zukunftsfähigkeit eines jeden produzierenden Unternehmens.


Das könnte Sie auch interessieren:

Das DFKI und das Fraunhofer IML untersuchen in einem Forschungsprojekt, wie künstliche Intelligenz bei der Vergabe von Lehrstühlen und Institutsleitungen unterstützen kann. In der Folge soll ein Portal für Bewerber-Profile entstehen.‣ weiterlesen

Nachhaltigkeit wird oft von den Beteiligten eines Wertschöpfungsnetzwerkes erwartet - und sie kann sich als gewinn- und kostenrelevant darstellen. Um jene Unternehmen zu diesem Wandel zu befähigen, die über begrenzte Ressourcen verfügen, können diese Firmen Ökosysteme etwa mit Zulieferern, Vertragspartnern und Technik-Dienstleistern aufbauen, um kreative Lösungen zu erarbeiten.‣ weiterlesen

Motiviert von der Aussicht auf Effizienz im Produktionsprozess und damit verbundenen Kosten- sowie Wettbewerbsvorteilen, setzen immer mehr Unternehmen auf Technologien wie etwa Sensorik oder künstliche Intelligenz. Und oft fällt das Schlagwort ’Green Manufacturing’. Dabei schauen viele nur auf den unmittelbaren ökologischen und ökonomischen Nutzen. Was oft fehlt, ist die Berechnung der Gesamtbilanz dieser Digitalisierungsmaßnahmen und der Weitblick in Sachen Nachhaltigkeit.‣ weiterlesen

Mit Dimitrios Koutrouvis hat Lütze Transportation ab Oktober einen neuen Geschäftsführer. Er tritt die Nachfolge von André Kengerter an.‣ weiterlesen

Der Bitkom schätzt die Schäden durch Cyberangriffe auf jährlich 220Mrd.€. Unternehmen sind also gefragt, sich bestmöglich gegen solche Vorfälle zu schützen. Wie? Darüber können sich Interessierte vom 25. bis zum 27. Oktober auf der Security-Messe It-sa informieren.‣ weiterlesen

Low Code-Entwicklungsplattformen helfen Unternehmen, ihre IT an stetig wechselnde Strukturen und Prozesse anzupassen. Es gilt: Wo programmiert wird, kann meist Low Code-Technologie eingesetzt werden – erst recht im IIoT-Projekt.‣ weiterlesen

Planung und Überwachung sind entscheidende Faktoren für die Effzienz einer Produktion. Die Basis dafür bilden Daten. Daher setzt die Firma GGK in ihrer Fertigung auf die IIoT-Plattform Toii. Mit ihr erfasst der Hersteller von Kabelmanagement-Systemen alle relevanten Daten, um die Transparenz zu verbessern und etwa Störungen schneller zu beseitigen.‣ weiterlesen

Korrekte Stammdaten sind beim Wechsel auf SAP S/4Hana enorm wichtig. Drei Tools für das Product Structure Management helfen, die Engineering-Stückliste mit der Manufacturing-Stückliste automatisiert abzugleichen.‣ weiterlesen

Eine industrielle IoT-Plattform unterstützt dabei, auf digitaler Basis Transparenz zu erzielen, Prozesse zu optimieren und Fehler zu vermeiden. Dafür werden Menschen, Produktions-IT-Systeme und Maschinen miteinander verknüpft. Doch wie funktioniert das?‣ weiterlesen

Mit einem Plus von 0,7 Prozent im Vergleich zum Juni liegt der Auftragsbestand im verarbeitenden Gewerbe im Juli auf einem neuen Höchstwert. Die Reichweite der Aufträge bleibt unverändert bei 8 Monaten.‣ weiterlesen