Beitrag drucken

Künstliche Intelligenz im MES

Implizites Planungswissen per KI integriert

Trotz IT-Unterstützung müssen Schichtleiter und Fertigungsplaner immer wieder in laufende Produktionsprozesse eingreifen. Künstliche Intelligenz (KI) hilft dabei, die Eingriffe zu verringern und die Produktionsqualität zu erhöhen.

 (Bild: ©sdecoret / Fotolia.com)

(Bild: ©sdecoret / Fotolia.com)

Die Ursachen für die steigenden Ansprüche an eine flexible Produktion steigen zum einen durch die Individualisierung der Kundenwünsche, die zu einer erhöhten Produktvarianz führt. Zum anderen sorgen hohe Rohstoffkosten und der zunehmende Wettbewerbsdruck dafür, dass produzierende Unternehmen eine möglichst hohe Auslastung ihrer Maschinen und Anlagen erreichen und Ausschüsse reduzieren müssen. Doch trotz weitgehender Automatisierung können die Anforderungen einer dynamischen Multivariantenproduktion nicht erfüllt werden. ERP- und Manufacturing-Execution-Systeme (MES) in der Produktion sind daher kaum verzichtbar. Diese Systeme decken jedoch die Produktion nicht vollständig digital ab: Kann beispielsweise ein Fertigungsauftrag alternativ auf mehreren Maschinen eingeplant werden, muss der Planer dies entscheiden. Das System entwickelt auf Basis der vorhandenen Daten einen Fertigungsplan. Der Planer greift jedoch immer wieder ein, weil er Informationen hat, die dem System nicht vorliegen. Mit der Zeit entwickelt der Planer Präferenzen, sogenanntes implizites Wissen, über das nur er verfügt – nicht aber das Planungssystem.

Grenzen klassischer Systeme

Auch wenn ERP- und MES-Lösungen die Prozessintegration entlang von Wertschöpfungsketten und Fertigungsprozessen (horizontale und vertikale Datenintegration) immer weiter vorantreiben und so versuchen, implitzites Wissen zu verringern, stoßen klassische Planungssysteme oft an ihre Grenzen, denn manuelle Änderungen innerhalb der Fertigungsplanung werden außerhalb des Systems vorgenommen und haben damit keinen Einfluss auf die zukünftige Einplanung durch das Planungssystem.

Komplexe Systeme

Entscheidet also der Planer aus einem speziellen Grund, einen Auftrag auf eine andere Maschine zu legen, so muss er diese Änderung jedes Mal vornehmen, wenn bei zukünftigen Aufträgen die gleichen Gründe auftreten. Klassische Analysemethoden erkennen zwar durch die Auswertung historischer Daten die Änderung, nicht aber die Gründe für diese Entscheidung – ihre Systemlogik ist nicht dafür geeignet, die Entscheidung zu prognostizieren. Der Planer muss also in das Planungssystem eingreifen. Da ERP- und MES-Lösungen aber mit steigender Datenmenge und zunehmender Integration in weitere Unternehmensbereiche immer komplexer werden, kann der Planer diese Komplexität nur mit sehr hohem Aufwand nachvollziehen. Manuelle Eingriffe zur Änderung eines Fertigungsplans werden somit immer schwieriger und haben oft Auswirkungen auf Bereiche, die Fertigungsplaner und -steuerer nur aufwendig mitbetrachten können. An dieser Stelle kommt künstliche Intelligenz bzw. maschinelles Lernen ins Spiel.

Assistenzbasierte Fertigungsplanung

Doch wie sieht eine assistenzbasierte Fertigungsplanung und -steuerung auf KI-Basis aus? Vereinfacht gesagt, lernt die KI aufgrund der Eingriffe durch den Planer, welche Änderungen er in Zukunft vornehmen wird. Die KI unterbreitet ihm entsprechende Vorschläge für die Planung bzw. Steuerung. Aus der Entscheidung des Planers, diesen Vorschlag zu akzeptieren oder zu ändern, lernt die KI. Des Weiteren kann sie den Planer bei seiner Eingabe auf unplausible Konstellationen aufmerksam machen. Planung und Steuerung werden so präziser und verlässlicher gegenüber einer Entscheidung, die auf der Auswertung historischer Daten basiert. Der Planer behält dabei die Entscheidungshoheit. Er kann mit Hilfe sogenannter Exception Rules die KI übersteuern. Die KI ergänzt den Planer, indem sie den Aufwand für manuelle Eingriffe und das damit verbundene Risiko für Planungsfehler reduziert. Es handelt sich also um ein Komplementär-, nicht um ein Defizitärmodell. Nicht der Planer, sondern immer wiederkehrende Planungskorrekturen gehören in einer Produktion mit intelligenten Assistenzsystemen der Vergangenheit an. Da durch maschinelles Lernen das implizite Wissen sukzessive Teil des Systems wird, geht zudem der Zugriff auf dieses Wissen nicht verloren, wenn der entsprechende Mitarbeiter ausfällt oder aus dem Unternehmen ausscheidet.

Für volatile Werksumgebungen

Der Einsatz von KI-Assistenzsystemen ist insbesondere in Produktionen mit hohem Volatilitätspotenzial sinnvoll, in denen ein Marktumfeld mit hoher Dynamik permanente Schwankungen und Änderungen bedingt. Ein Beispiel ist die Print&Packaging-Industrie, in der produzierende Unternehmen für viele Abnehmer sehr unterschiedliche Produkte fertigen. Die Becos GmbH aus Stuttgart ist mit ihren MES- und IoT-Lösungen u.a. in dieser Branchen aktiv und entwickelt KI-basierte Anwendungen für produzierende Unternehmen. In einem konkreten Einsatz einer assistenzbasierten Fertigungsplanung und -steuerung bei einem Verpackungshersteller erreichte das Unternehmen bei einer automatischen Einplanungsquote von über 90 Prozent eine Planungszeitreduktion von bis zu 30 Prozent. Unter den Bedingungen einer steigenden Fertigungsdynamik und eines zunehmenden Wettbewerbsdrucks ist der Einsatz KI-basierter Assistenzsysteme nicht nur eine Frage der Wirtschaftlichkeit, sondern auch der Zukunftsfähigkeit eines jeden produzierenden Unternehmens.


Das könnte Sie auch interessieren:

Prof. Dr.-Ing. Holger Hanselka, Präsident des Karlsruher Instituts für Technologie (KIT) wird der 11. Präsident der Fraunhofer-Gesellschaft und löst Prof. Dr.-Ing. Reimund Neugebauer nach fast elf Jahren ab.‣ weiterlesen

Christian Thönes, Vorstandsvorsitzender bei DMG Mori, hat am Donnerstag sein Amt niedergelegt. Sein Vertrag wurde im Rahmen einer Aufsichtsratssitzung einvernehmlich beendet. Alfred Geißler wurde vom Aufsichtsrat zum Nachfolger bestellt.‣ weiterlesen

Microsoft feiert 40. Geburtstag in Deutschland und eröffnet ein europäisches Experience Center in München. Es ist eines von vier Experience Centern weltweit.‣ weiterlesen

Expertinnen und Experten der Plattform Lernende Systeme beleuchten in einem neuen Whitepaper, wie es um die Entwicklung europäischer bzw. deutscher KI-Sprachmodelle bestellt ist.‣ weiterlesen

Cyber-physikalische Systeme (CPS), wie etwa Autos oder Produktionsanlagen, stecken voller elektronischer und mechanischer Komponenten, die von Software gesteuert werden. Jedoch ist es eine Herausforderung, die Systemarchitekturen solcher Systeme fortwährend konsistent zu halten. Neue Methoden dafür soll ein Sonderforschungsbereich (SFB) am Karlsruher Institut für Technologie (KIT) entwickeln.‣ weiterlesen

Mit der Akquisition der Pod Group hat G+D bereits 2021 sein Portfolio im IoT-Bereich erweitert. Durch den Erwerb von Mecomo geht das Unternehmen nun einen weiteren Schritt in Richtung IoT-Komplettanbieter im Transport- und Logistikbereich.‣ weiterlesen

Die Grimme-Gruppe produziert individuell konfigurierte Landmaschinen. Was für den Wettbewerb Vorteile bringt, ist allerdings mit großem Aufwand verbunden - so verwaltete Grimme Kundenanfragen lange über ein Excel-Tool. Mit dem Softwareanbieter Slashwhy zusammen wurde dies durch ein webbasiertes Anfragemanagement-Programm abgelöst.‣ weiterlesen

Die Software Moryx hilft der Fertigungssteuerung, Maschinen schnell auf einen neuen Kurs zu bringen oder sie für den nächsten Auftrag anzupassen. Mit seinen einheitlichen Bedienoberflächen und seiner niedrigen Einstiegshürde ist das Tool von Phoenix Contact insbesondere auf den Einsatz in Fertigungen mit der Losgröße 1 ausgerichtet.‣ weiterlesen