Anzeige
Beitrag drucken

Aus guten Gründen Wachstumsmarkt

Künstliche Intelligenz in der Produktion

Künstliche Intelligenz (KI) gilt als Schlüsseltechnologie auf dem Weg zur Smart Factory. Daher sollte sich auch der produzierende Mittelstand, oft als Rückgrat der deutschen Wirtschaft bezeichnet, mit der Adaption von KI-Technologie befassen. Doch was machen KI-Systeme überhaupt anders als bisherige IT-Lösungen? Und welcher Nutzen erwartet die Anwender?

 (Bild: ©pinkeyes/stock.adobe.com)

(Bild: ©pinkeyes/stock.adobe.com)

Wenn vom Einsatz künstlicher Intelligenz in der Produktion gesprochen wird, ist meist die sogenannte schwache KI gemeint, die sich durch die Fähigkeit zur Selbstoptimierung auszeichnet. Dafür müssen technologische Lösungen Daten nicht nur lesen, sondern interpretieren können. Hier liegt der wesentliche Unterschied zu einem Manufacturing Execution System (MES), das Daten aggregiert, verdichtet und visualisiert. Diese Eingabe-Ausgabe-Struktur ließe sich durch KI um die Funktion der Dateninterpretation erweitern.

Muster erkennen

Die technische Grundlage der Dateninterpretation ist das Machine Learning. Die KI erkennt in den Daten Muster, die in die Interpretation einfließen. Während selbst kleinste Aufgabenveränderungen eine Neuprogrammierung klassischer regelbasierter IT-Systeme nach sich ziehen, kann ein KI-basiertes System Änderungen erkennen und aufgrund des bereits im System vorhandenen Wissens auf diese Änderungen reagieren. Die Reaktion selbst stellt neues Wissen innerhalb des Systems dar – quasi den Lerneffekt.

Wissensmanagement

Die Fähigkeit zur Dateninterpretation reicht noch lange nicht, um KI-Systeme wie in der Vision einer Smart Factory vollständig autonom agieren zu lassen. Sie ermöglichen aber, das sogenannte implizite Wissen ins System zu übertragen. Mit implizitem Wissen sind das Knowhow und die Erfahrungen der Menschen gemeint, die sie sich über die Jahre im Rahmen ihrer Tätigkeiten angeeignet haben und das nicht mehr verfügbar wäre, wenn die Wissensträger ausfallen oder das Unternehmen verlassen. Durch KI verändert sich die von Menschen ausgeübte Arbeit.

Mehr Potenzial als IT und Robotik

Auch wenn es noch ein weiter Weg ist bis zu autonom entscheidenden Produktionssystemen und dem Werkstück, das sich selbstständig den Weg über den Shopfloor sucht, wird der KI doch erhebliches Wachstumspotenzial beigemessen. Das McKinsey Global Institute prognostiziert für Deutschland bis 2030 ein jährliches Wachstum des Bruttoinlandsprodukts um 1,3 Prozentpunkte allein durch den Einsatz künstlicher Intelligenz. Zum Vergleich: Einen derartigen Effekt hatte weder die Nutzung der Informations- und Kommunikationstechnologie (Wachstumsschub um 0,6 Prozentpunkte) noch die Einführung von Industrierobotern (0,4 Prozent). Eine Studie im Auftrag des Bundesministeriums für Wirtschaft und Energie geht davon aus, dass im produzierenden Gewerbe der Einsatz künstlicher Intelligenz bis 2023 eine zusätzliche Bruttowertschöpfung in Höhe von rund 31,8 Milliarden Euro generieren wird. „Die Mehrheit der Unternehmen des produzierenden Gewerbes rechnet mit einem stark wachsenden Einsatz von KI-Technologien in allen Wertschöpfungsstufen in den nächsten fünf Jahren“, heißt es in der Studie. Dieses Wachstumspotenzial ist auch der geringen Verbreitung von KI-Systemen in der produzierenden Industrie geschuldet: 25 Prozent der großen und 15 Prozent der kleinen und mittelständischen Produzenten nutzen bereits KI-basierte Anwendungen. Im Produktionsumfeld sinkt diese Zahl bei KMU auf acht Prozent. Die Prozess-Steuerung durch selbstlernende Systeme ist nur wenig ausgeprägt.

Wartung und Qualitätskontrolle

Dabei steckt gerade in den produktiven Kern- und Unterstützungsprozessen großes Potenzial für KI-basierte Anwendungen: etwa durch eine vorausschauende Wartung (Predictive Maintenance), mit der die Einsatzdauer von Maschinen, Werkzeugen und Anlagen erhöht wird, sowie durch eine Steigerung der Produktivität. Sogenannte kollaborative und kontextsensitive Robotiksysteme werden den Produktionsdurchsatz selbst in solchen Fertigungsbereichen steigern, deren Automatisierungsgrad nur schwer erhöht werden kann. Gleichzeitig führt die Vernetzung zwischen produktionsnahen und -fernen Systemen zu einer Effizienzsteigerung, indem etwa Ausschuss reduziert wird. Ebenso unterstützt ein auf künstliche Intelligenz fußendes Qualitätsmanagement den kontinuierlichen Verbesserungsprozess im Unternehmen.

Fachkräfte und Akzeptanz

Im Mittelstand wird insbesondere in intelligente Automatisierung, Sensorik und in selbstlernende Assistenzsysteme investiert. Da Fachkräfte vielerorts fehlen, knüpfen Unternehmen dafür verstärkt Netzwerke mit Technologieanbietern und der Wissenschaft. Für intelligente Assistenzsysteme kommen semantische KI-Technologien zum Einsatz. Sie verfügen über einen hohen Querschnittscharakter, decken also eine Vielzahl an Anwendungen ab. Auf diese Weise können die Erträge aus den Investitionen in Forschung und Entwicklung leichter optimiert werden.


Das könnte Sie auch interessieren:

Seit gut eineinhalb Jahren betreibt Simus Systems eine Online-Plattform, auf der Auftraggeber und Auftragnehmer die Metallbearbeitung von Bauteilen kalkulieren - und das Interesse am Tool ist rege. Anwender laden ihr CAD-Modell hoch und erhalten eine valide Vorkalkulation des geplanten Bauteils.‣ weiterlesen

Erst die Interoperabilität von Maschinen und Anlagen ermöglicht Unternehmen die Teilhabe an neuen digitalen Strukturen und ist Grundvoraussetzung für neue digitale Geschäftsmodelle. Durch interoperable Schnittstellen können neue Maschinen effizienter integriert werden. Die VDMA-Studie ‘Interoperabilität im Maschinen- und Anlagenbau‘ zeigt die Relevanz von interoperablen Schnittstellen und dazugehörigen Standards in den Unternehmen.‣ weiterlesen

Im Gewerbebau gehört ein differenziertes Zutrittsmanagement zum Standard der meisten Ausschreibungen. Für Betriebe lohnt es, sich mit dem Thema zu beschäftigen. Denn die Infrastruktur sollte später neue Anforderungen im Besuchermanagement ohne hohe Mehrkosten abbilden können.‣ weiterlesen

Die Vor- und Nachteile von SQL-, NoSQL- und Cloud-Datenbanken in Produktionsumgebungen werden noch immer diskutiert. Es wird höchste Zeit für ein Datenbankmanagement-System, das die Stärken aller drei miteinander verbindet.‣ weiterlesen

Predictive Maintenance, oder auch vorausschauende Instandhaltung, bildet einen der primären Anwendungsfälle im Spektrum der Industrie 4.0. Doch noch sind viele Unternehmen von den Ergebnissen enttäuscht, nachdem ihnen die technische Umsetzung gelungen ist. Eine planvolle Roadmap beugt dem vor, indem ein vorteilhafter Rahmen um das Werkzeug gezogen wird.‣ weiterlesen

Das Systemhaus Solid System Team wird von einer Doppelspitze geleitet. Neben Werner Heckl ist seit 1. April auch Torsten Hartinger mit der Geschäftsführung betraut.‣ weiterlesen

Materialise erwirbt Kaufoption von MES-Anbieter Link3D. Mögliche Übernahme könnte den Weg zum cloudbasierten Zugriff auf die 3D-Druck-Software-Plattform von Materialise ebnen.‣ weiterlesen

Ist die IoT-Infrastruktur in der Fertigung erst einmal installiert, müssen die erfassten Daten analysiert und in Nutzen überführt werden. Dabei kommt Event-Streaming-Technologie vor allem dann in Frage, wenn Anwender ihre Daten echtzeitnah verarbeiten wollen.‣ weiterlesen

Frank Possel-Dölken (Phoenix Contact) ist neuer Vorsitzender des Lenkungskreises der Plattform Industrie 4.0. Er übernimmt das Amt von Frank Melzer (Festo).‣ weiterlesen

Anzeige
Anzeige
Anzeige