Anzeige
Anzeige
Beitrag drucken

Qualitätskontrolle

Sehen, was der Mensch nicht sieht

Fehlerhafte Schweißnähte, Kratzer auf Oberflächen oder Risse in Tabletten – viele Industrieunternehmen setzen bei der Qualitätskontrolle und Erkennung von Fehlern in der Fertigung auf automatisierte Bildverarbeitung. Auch der Chiphersteller Intel setzt auf Machine Vision, zum Beispiel in der Wafer-Fertigung.

 (Bild: Intel Corporation)

(Bild: Intel Corporation)

Die digitale Fabrik steht für vernetzte und nahezu selbststeuernde Produktionsabläufe mittels intelligenter Maschinen und Werkstücke. Produktionsanlagen melden über Sensoren permanent ihren aktuellen Status. Durch intelligentes Monitoring der Fertigungsdaten können Unternehmen nahezu in Echtzeit auf veränderte Rahmenbedingungen reagieren und ihre Produktion entsprechend steuern und optimieren. Ein wichtiger Baustein der intelligenten Produktion ist Machine Vision, also die automatisierte Bildverarbeitung. Systeme zur Bildverarbeitung basieren auf Industriekameras mit digitalen Sensoren und einer speziellen Optik zur Bilderfassung sowie einer Kombination aus Hardware und Software. Sie extrahieren, verarbeiten und analysieren mit Hilfe von Algorithmen Daten aus digitalen Bildern. Die Einsatzszenarien der Bildverarbeitung sind vielfältig und reichen von der Identifikation bestimmter Werkstücke bis hin zur Prozess- oder Qualitätskontrolle – wo Machine Vision auch beim Chiphersteller Intel zum Einsatz kommt. Im Rahmen der Qualitätskontrolle erkennen enstprechende Systeme Fehler, optische Mängel, Verschmutzungen sowie sonstige Unregelmäßigkeiten an den Produkten. Sie klassifizieren die Mängel und geben diese an die übergeordnete Anlagensteuerung weiter, damit diese die fehlerhaften Teile nicht verwendet oder zur Nachbearbeitung weiterleitet. Intel setzt die industrielle Bildverarbeitung beispielsweise in den eigenen Fabriken bei der Wafer-Fertigung ein, um Mängel zu erkennen.

Dem Menschen überlegen

Die automatisierte Bildverarbeitung ist menschlichen Prüfern bei immer wiederkehrenden Kontrollaufgaben überlegen: Die Methode ist schneller, objektiver und braucht keine Schichtwechsel. Durch den Einsatz von Machine Vision an der Produktionslinie können Tausende Teile pro Minute rund um die Uhr geprüft werden- mit gleichbleibenden und zuverlässigen Ergebnissen. Zudem ist die Technologie in der Lage, bei richtiger Auflösung und Optik Details zu erkennen, die das menschliche Auge nicht sieht. Manuelle Prozesse sind dafür oft zu aufwendig und fehleranfällig. Etwa sechs bis neun Monate kann es dauern, bis die Mitarbeiter so weit geschult sind, dass sie Fehler manuell mit einer Genauigkeit von bis zu 90 Prozent klassifizieren können. Und selbst nach Abschluss des Trainings hält ein erfahrener Bediener im Durchschnitt lediglich eine Genauigkeit von 70 bis 85 Prozent ein. Weiterer Vorteil von Machine Vision-Systemen: Da der physische Kontakt mit den Prüfteilen entfällt, besteht nicht die Gefahr einer Beschädigung der Werkstücke. Bei Intel lassen sich beispielsweise auch Kontaminationen von Reinräumen durch Menschen vermeiden.

Bild1 und bild2

Bild: Intel Corporation

Bild: Intel Corporation

Maschinen sind in manchen Situationen in der Lage, Details zu erkennen, die das menschliche Auge nicht sieht. (Bild: Intel Corporation)

Maschinen sind in manchen Situationen in der Lage, Details zu erkennen, die das menschliche Auge nicht sieht. (Bild: Intel Corporation)

Integriert in die Linie

Systeme für die automatisierte Bildverarbeitung integrieren Industriekameras mit digitalen Sensoren und einer speziellen Optik zur Bilderfassung, leistungsfähige Rechner für die Bildverarbeitung über Algorithmen und Kommunikationstechnologien zur Vernetzung der verschiedenen Komponenten einer industriellen Anlage. Denn die Systeme werden direkt in die Fertigungslinien integriert und tauschen Daten über Industrial Ethernet-Protokolle wie Profinet oder EtherNet/IP aus. Ein wichtiges Bindeglied zwischen den Kameras und den Rechnern, die die Algorithmen zur Bildverarbeitung ausführen, sind so genannte Framegrabber. Sie erfassen die Bilddaten der Kameras in Standard-Formaten wie DVI, HDMI oder Camera Link oder sie passen sich an ein proprietäres Datenformat der Kamera an. Zudem verarbeiten sie die Daten, überführen sie in ein Zielformat und übertragen sie an den Industriecomputer weiter, auf dem die Bildverarbeitung über Algorithmen erfolgt.

Antrainierte Muster

Unabhängig davon, ob es um die Erkennung von Fehlern auf Stahloberflächen, Risse in Tabletten oder Mängel bei der Fertigung von Wafern geht – die Bildverarbeitung basiert grundsätzlich auf einem Mustervergleich: Um zuverlässige und wiederholbare Ergebnisse zu erhalten, muss das Bildverarbeitungssystem eintrainierte Muster schnell und exakt mit den tatsächlichen Objekten auf dem Fließband abgleichen. Den ersten Schritt dazu bildet die korrekte räumliche Erfassung des Prüfteils oder Objekts innerhalb des Sichtfelds der Kamera. Die Anwendung ist erfolglos, wenn das Teil nicht präzise lokalisiert wird. Hat das System die entsprechenden Merkmale erkannt, prüft und misst die Software das Objekt und vergleicht die Ergebnisse mit den Spezifikationen. Anschließend erfolgen die Entscheidung (Pass oder Fail) und die Kommunikation der Ergebnisse an die Steuerungssoftware der Anlage. Die zugrunde liegenden Algorithmen werden im Vorfeld mit Unmengen von Daten und Bildern trainiert, um Merkmale zu erkennen und Fehler wie etwa Risse klassifizieren zu können. Dabei kommen auch Machine Learning-Methoden oder neuronale Netze (Deep Learning) zum Einsatz, um die Genauigkeit permanent zu verbessern und Mängel bzw. Abweichungen von der Spezifikation besser zu erkennen.

Klassifizierungsmodelle erstellen

Intel selbst verwendet für die Qualitätskontrolle in der Waferfertigung hochauflösende Fotos von Rasterelektronenmikroskopen als Input für die Bildverarbeitungsalgorithmen. Die Auswertung der großen Datenmengen, das Training der Algorithmen und Modelle sowie das Erstellen von genauen Klassifizierungsmodellen erfolgen auf Basis von Servern mit Intel Xeon Prozessoren. Darüber hinaus bietet Intel Field Programmable Gate Arrays (FPGAs) für den Einsatz in den Kameras oder als Beschleuniger für die Bildverarbeitung in Edge-Computern, in denen die KI-Anwendung in der Nähe der Videokamera arbeitet. Mit dem Toolkit Openvino stellt der Chiphersteller zudem ein spezielles Werkzeug für Deep-Learning-Frameworks wie Tensor Flow, MX Net und Caffe bereit. Die FPGAs (Field Programmable Gate Array) stammen aus den Serien Intel Max 10 FPGA, Cyclone IV und Cyclone V. Sie bieten eine hohe Leistung pro Watt, niedrige Latenzzeit und lassen sich flexibel an eine Vielzahl von Bildsensoren sowie MV-spezifische Schnittstellen anpassen, beispielsweise Camera Link oder GigE Vision. Auf diese Weise können Firmen Bilderfassung, Kameraschnittstellen, Vorverarbeitung in Framegrabbern und Kommunikation in einem einzigen FPGA-Gerät integrieren.


Das könnte Sie auch interessieren:

PerfectPattern hat die kostenlose Basisversion von Insights App vorgestellt. Mit der Software können Prozessingenieure, Produktionsexperten und Datenwissenschaftler die von PerfectPattern entwickelte KI-Technologie Aivis nutzen, um Einblicke in Produktionsprozesse zu erhalten.‣ weiterlesen

Die Buss-Unternehmensgruppe ist in vielen unterschiedlichen Geschäftsfeldern tätig. Eine Herausforderung, stand doch ein Wechsel des ERP-Systems ins Haus - mit mehr als 80 Unternehmen innerhalb der Gruppe. Gemeinsam mit dem IT-Dienstleister Sven Mahn IT gelang es, das Projekt innerhalb von 14 Wochen umzusetzen.‣ weiterlesen

Werden neue Technologien wie beispielsweise künstliche Intelligenz Teil des Arbeistalltages wünscht sich ein Großteil der unter 31-Jährigen, darüber informiert zu werden. Dies geht aus einer Studie des IT-Security-Anbieters Kaspersky hervor. Auch ein menschliches Antlitz könnte laut Studie für mehr Akzeptanz sorgen.‣ weiterlesen

Schlechtere Stimmung als noch im Juni. Geschäftsklima-Index des Ifo Instituts hat in der aktuellen Erhebung im Vergleich zum Vormonat nachgegeben.‣ weiterlesen

Die Sprints zu Covid19-Impfstoffen zeigen den Leistungsdruck, unter dem die Technologieentwicklung steht. In kürzester Zeit sollen Forscher und Ingenieure Lösungen für die kritischen Probleme unserer Zeit finden. Der Accelerated-Discovery-Ansatz soll helfen, Forschungs- und Entwicklungsprozesse mit KI, Hybrid Cloud und schließlich Quantencomputern um das zehn- bis hundertfache des heute Möglichen zu beschleunigen.‣ weiterlesen

Trebing + Himstedt hat die Partnerschaft mit Celonis bekanntgegeben. Die Unternehmen wollen zukünftig beim Thema Process Mining zusammenarbeiten.‣ weiterlesen

Im Rahmen einer Partnerschaft wollen Crate.io und Zühlke zukünftig gemeinsam an Smart Factory- und Industrie 4.0-Lösungen arbeiten.‣ weiterlesen

Die Dualis GmbH IT Solution hat für Lean-Manufacturing-Aufgabenstellungen ein Add-on zur 3D-Simulationsplattform Visual Components entwickelt. Basierend auf Process Modelling können damit automatisch branchengängige Standardized Work Sheets generiert werden.‣ weiterlesen

Um verschiedene Daten aufzubereiten und den Mitarbeitern nutzenbringend bereitzustellen, ist nicht immer ein großes IT-Projekt nötig. Wer schnell Daten für die Beschäftigten visualisieren möchte, sollte sich einmal näher mit Dashboards befassen.‣ weiterlesen

Die Simulation am digitalen Zwilling macht die Inbetriebnahme von Anlagen und Maschinen mit automatisierten Bewegungen sicherer. Fehler fallen früher auf und können behoben werden, bevor die Anlage aufgebaut ist. So lassen sich Schäden und Verzögerungen vermeiden. Auch als Schulungstool für Bediener und Programmierer ist die digitale Maschine hilfreich.‣ weiterlesen

ISPE, APV, Concept Heidelberg und die VDI/VDE Gesellschaft Mess- und Automatisierungstechnik richten am 30. November bis zum 1. Dezember 2021 im Dorint Kongresshotel in Mannheim die 14. Offizielle GAMP 5 Konferenz aus.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige