Produktentwicklungen werden zunehmend virtuell durchgeführt. Dazu braucht man konsistente Werkstoffdaten. Jedoch sind die Materialbezeichnungen und die verknüpften ‚Materialkarten‘ für weiterführende CAE-Untersuchungen oft völlig unzureichend. Eine Lösung bietet die praxisorientierten Werkstoffsimulation dieser Daten.
Genormte Werkstoffe lassen häufig sehr große Analysenspannen zu. Dadurch geben sie dem Hersteller die Freiheit, zum Beispiel einen Stahl mit unterschiedlichen Zielsetzungen zu produzieren, indem beispielsweise die teuersten Elemente auf das zulässige Minimum reduziert werden. Vorgegebene Werte, etwa für die Festigkeit, werden dabei zwar eingehalten, die unterschiedlichen chemischen Zusammensetzungen führen aber oft zu Streuungen bei anderen physikalischen und temperaturabhängigen Werkstoffdaten. Dies kann einen großen Einfluss auf die Fertigungssicherheit und Produkteigenschaften haben. „Wer diese Zusammenhänge nicht kennt oder ignoriert, kann zum Beispiel bei der Simulation eines Schweißprozesses mit einer Materialkarte für einen S235 böse Überraschungen erleben. Vor allem wenn sich zusätzlich herausstellt, dass das schon vorhandene Material aus unterschiedlichen Chargen stammt“, berichtet der Werkstoffexperte Uwe Diekmann, Geschäftsführer des Softwareanbieter Matplus GmbH in Kamen. Das Unternehmen ist im deutschsprachigen Raum ein Anbieter führender Lösungen auf den Gebieten Werkstoffsimulation, Werkstoffdatenmanagement und Wissensmanagement.
Komplexität wird unterschätzt
Denn allgemein wird die Komplexität von Werkstoffdaten unterschätzt: Während im Bereich PLM Geschäftsprozesse und Datenstrukturen für das Konfigurationsmanagement von Produkten mit Schwerpunkt auf Geometriedaten vorhanden sind, bestehen Werkstoffdaten bisher oft nur aus einem Katalog mit Bezeichnungen und wenigen belastbaren Daten, die zudem oft keiner Versionskontrolle unterliegen. Daher ist es wenig verwunderlich, wenn Materialkarten aus unterschiedlichen Quellen widersprüchliche Ergebnisse erzielen. Für viele Prozessketten werden jedoch exakte Eingangsparameter zum Beispiel zur temperaturabhängigen Wärmeleitfähigkeit, E-Modul oder Ausdehnungskoeffizienten benötigt, um Produkt- und Prozessoptimierungen mit FEM-Methoden durchzuführen. Diese Daten hängen vom Gefüge des Werkstoffs ab, welches sich als Funktion der chemischen Zusammensetzung und der Prozessfolge ergibt. Normdaten und Zeugnisdaten allein reichen hier bei weitem nicht aus.
Zwei Lösungsansätze
Als Abhilfe aus diesem Dilemma gibt es zwei pragmatische und sich ergänzende Lösungsansätze:
Aufbau von spezifischen Werkstoffdatensystemen im Intranet, die analog zu PLM die relevanten Werkstoffdaten den Anwendern versionskontrolliert zur Verfügung stellen: Die richtige, freigegebene Materialkarte in der richtigen Version zur richtigen Zeit beim Anwender
Erstellung konsistenter Werkstoffdaten beziehungsweise analysengenauen Materialkarten durch eine praxisorientierte Simulation, da eine experimentelle Ermittlung sehr zeit- und kostenintensiv ist
Für den Aufbau eines leistungsfähigen und standortübergreifenden Wissensmanagements auf dem Gebiet der Werkstoffdaten ist die Stahldat SX auf Basis der Standardsoftware Granta-MI eine gute Ausgangsbasis – Erweiterungen mit eigenen Daten können dann leicht vorgenommen werden, da bereits alle wesentlichen Strukturen von parametrischen Fließkurven bis hin zu Volltextdokumenten vorhanden sind. Die andere Möglichkeit besteht in der erwähnten Simulation der Daten, so zum Beispiel mit JMatPro (Java-based Materials Properties). Diese Software, mittlerweile als ein Industriestandard bekannt, berechnet alle benötigten Werkstoffeigenschaften, sowohl für Stähle wie für Aluminium-, Kupfer-, Nickel- und Titan-Legierungen. Die ebenfalls ermittelten ZTU- und ZTA-Diagramme sowie die Daten über das resultierende Anlassverhalten ermöglichen wiederum die Beschreibung der Gefügeentwicklung über den Herstellprozess bis hin zu Fließkurven für die Umformsimulation.
Vielfalt beherrschen: Mehr als 1.000 Varianten einer Werkstoffbezeichnung im Vergleich (Bild: Matplus)
Automatisierte Schnittstellen
Über automatisierte Schnittstellen werden diese Daten dann an alle gängigen FEM-Systeme wie Ansys, Magmasoft, Simufact, Deform et cetera weitergereicht. Grundlage dieser Simulation ist die wissenschaftlich etablierte CalPhaD-Methode (Calculation of Phase Diagrams) mit zugehöriger thermodynamischer Datenbank. Mit dieser Methode werden die sogenannten Phasengleichgewichte mit den sich bildenden Gefügebestandteilen und letztlich die Werkstoffeigenschaften ermittelt. Auf dieser Basis berechnet JMatPro dann nach Eingabe der exakten chemischen Zusammensetzung aus einem vorliegenden Materialzeugnis einer Charge quasi auf Knopfdruck eine spezifische ‚Materialkarte‘ mit konsistenten thermophysikalischen Daten. Deshalb wird die Software heute in ganz unterschiedlichen Branchen wie Stahl, Anlagenbau, Automobil, Leichtbau, Gießerei, Umformtechnik, Wärmebehandlung und Forschung eingesetzt. „Mit der Möglichkeit solcher Simulationen kann sich auch ein umfassenderes Werkstoffverständnis entwickeln – vor allem für die alltägliche Praxis“, weiß Uwe Diekmann aus Erfahrung zu berichten. Damit ließen sich wiederum die technischen Lieferbedingungen präziser definieren, „wobei die zulässigen Normwertebereiche eingeschränkt und auch bestimmte Gefügestrukturen vom Produzenten gefordert werden können.“
Große Variationsvielfalt
Die eingangs beschriebenen Analysespannen der Legierungselemente ermöglichen andererseits eine große Variationsvielfalt. So kann eine systematisch durchgeführte Veränderung der einzelnen Legierungsanteile zu einer so großen Zahl an Lösungsmöglichkeiten führen, dass deren Optima nicht mehr manuell identifiziert werden können. Die webbasierte Software EDA JM bietet deshalb als Ergänzung zu JMatPro die Möglichkeit, das ganze Spektrum der vorangegangenen Analysen systematisch zu untersuchen und selbst in Abhängigkeit sehr komplexer Zielkriterien aus Tausenden von Materialvarianten die Optima für Produkte und Prozesse herauszufiltern. Diese können dann zu Sets zusammengefasst werden. Durch eine Verknüpfung mit weiteren Selektionskriterien lässt sich schließlich die optimale Werkstoffzusammensetzung bestimmen. Für den Anwender liegt der praktische Mehrwert einer Werkstoffdatensimulation somit auf der Hand: Trotz der erlaubten Schwankungen der Legierungselemente können die geforderten Produkteigenschaften erzielt erreicht werden. Außerdem sorgt die Simulation der Werkstoffdaten sowohl für die Stabilität wie für die Optimierung der Fertigungsprozesse.
PLM eingebettet in Microsoft ERP: Bluestar PLM – Transparenter Datenfluss
COSCOM – Digitalisierung im Shopfloor: Strukturierte Fertigungsdaten vom ERP bis an die Maschine
proALPHA ray: mobiles ERP im Browser
Make Lean Leaner
Wachstum durch Kundenorientierung: Das Geheimnis liegt in einem smarten Variantenkonfigurator
OT- und ICS-Cyberrisiken managen: Vollständige Sichtbarkeit, Sicherheit und Compliance
MPDV Mikrolab GmbH – WE CREATE SMART FACTORIES
Industrie 4.0 am Wendepunkt
ANZEIGE
Whitepaper
Erfahren Sie in unserem E-Book mit dem Fokus auf den Maschinenbau & Anlagenbau, wie Sie mit dem way APS-System Ihre Supply Chain planen und steuern können.
Vollautomatische Feinplanung
Mit Kennzahlen die Produktion im Griff
Vom 4-Stufen-Modell zum Regelkreis
Sales & Operations Planning (S&OP) mit der waySuite: Optimal aufeinander abgestimmte Absatz-, Projekt-, Produktions- und Beschaffungsplanung mit der waySuite
ANZEIGE
Videos
Hager Group & encoway: End-to-End Customer Journey mit skalierbarer Konfigurationsplattform
Erfolgreiche Asprova APS Einführung bei Prospera: Laserschneiden, Biegen und Stanzen. Aprova hat all unsere Planungsprobleme gelöst.
Erfolgreiche Asprova APS Einführung bei Kontio, finnischer Hersteller von Blockhäusern
Erfolgreiche Asprova APS Einführung bei Strauss Café, zweitgrößter Kaffeehersteller in Polen
Mittelständische Unternehmen investieren selbst in schwierigen Zeiten in Microsoft-Technologien, weil sie überzeugt sind, dass ihre Mitarbeiterproduktivität steigt und sich ihre Kostenstruktur bessert. Microsoft hat mit dem Microsoft-Partner-Network ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. Für unsere Leser gibt die Microsoft-Partnerübersicht in Ausgabe Juli/August der IT&Production Tipps für die Suche nach einer geeigneten Branchen- oder Speziallösung im Bereich des produzierenden Gewerbes.
Auf der Suche nach Innovation, nach neuen Lösungen und der Abgrenzung zum Mitbewerb vernetzen sich zunehmend mehr Unternehmen mit externen Experten und Partnern. SAP hat mit dem SAP-Ecosystem ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. In der Maiausgabe der Fachzeitschrift IT&Production erhalten unsere Leser einen aktuellen Überblick zum SAP-Ecosystem im Bereich des produzierenden Gewerbes.
Das Internet of Things verändert Produktwelten und die Vernetzung in der Fertigung gleichermaßen. Entstehende Ökosysteme laden zur einer neuen Form der Zusammenarbeit ein. Die Spezialausgabe IoT Wissen Kompakt informiert über die Technologie, Projektierung und Anbieter für die eigene Applikation, in- und außerhalb der Fabrik.
Um alle Potenziale eines MES umfassend ausnutzen zu können, beleuchten unsere Autoren in der Serie von MES Wissen Kompakt die erfolgskritischen Faktoren, um Fertigungsunternehmen präventiv zu steuern. Darüber hinaus präsentiert MES Wissen Kompakt ein breites Spektrum an Firmenportraits, Produkt- neuheiten und Dienst- leistungen im MES-Umfeld.
Ein Unternehmen, das sich mit der Auswahl eines ERP- Systems befasst, muss sich gleichsam mit einem viel- schichtigen Software-Markt und unklaren Interessen- lagen an interne Abwick- lungsprozesse auseinander- setzen. Guter Rat bei der Investitionsentscheidung ist teuer. ERP/CRM Wissen Kompakt unterstützt Sie bei der gezielten Investition in die IT-Infrastruktur.
Immer mehr Anbieter von Maschinen, Automatisierungstechnik und Industriesoftware integrieren künstliche Intelligenz in ihre Produkte. Das ganze Potenzial spielen selbstlernende Systeme aber erst aus, wenn sie passgenau auf ihren Einsatz in Fertigung und Büro zugeschnitten wurden. Über beide Möglichkeiten, als Fertiger die Vorzüge von industrieller KI zu nutzen, geht es im regelmäßig aktualisierten Themenheft Künstliche Intelligenz.