Anzeige
Anzeige
Anzeige
Beitrag drucken

Simulation

Frische Luft zwischen den Sternen

Lebenserhaltungssysteme für die bemannte Raumfahrt müssen den Astronauten atembare Luft und Trinkwasser zur Verfügung stellen. Mit dem Projekt 'Atmosphere Revitalization Recovery and Environmental Monitoring' (Arrem) entwickeln Ingenieure bei der Nasa Atmosphärenregelungsgeräte, um die Sicherheit der Crew an Bord zu gewährleisten.



Bild: Image courtsey of Nasa

Die Atmosphäre in einem bemannten Raumfahrzeug muss regelmäßig aufbereitet werden, um die Sicherheit der Astronauten und den Erfolg der Mission zu gewährleisten. Für mehrmonatige Missionen bedeutet dies, dass die Luft kontinuierlich entfeuchtet, Wasser zur Wiederverwendung gesammelt und Kohlendioxid (CO2) abgeschieden werden muss. Eine der Komponenten des Atmosphärenregelungssystems ist ein Gerät zur Wasserrückgewinnung, das von Jim Knox, einem Luft-und Raumfahrtingenieur bei der Nasa, im Rahmen des Projektes ‚Atmosphere Revitalization Recovery and Environmental Monitoring‘ (Arrem) optimiert wird.

Er leitet am Marshall Space Flight Center in Huntsville, Alabama, ein Team, das das Ziel verfolgt, das System kostengünstiger und effizienter zu gestalten. Dies geschieht, indem der Energieverbrauch gesenkt und die zurückgewonnene Wassermenge maximiert wird. Das Ziel des Teams ist eine 80- bis 90-prozentige Wiederaufbereitung des Wassergehalts der Luft. Das Team hofft, den Flugsystementwicklern der Nasa einen integrierten Ansatz zur Luftaufbereitung und Wasserrückgewinnung zu liefern, der letztendlich eine längere Missionsdauer und eine größere Reichweite der Raumflüge ermöglicht.

Abscheiden durch effiziente Adsorption

Die Aufbereitung der Luft innerhalb eines Raumfahrzeuges erfordert das Abscheiden von Wasserdampf, das Entfernen von CO2 und die Wiederabgabe des Wasserdampfs an die Luft bevor er kondensiert. Das vom Team entwickelte Wasser-Wiederaufbereitungssystem wird als Isothermal Bulk Desiccant (IBD) bezeichnet. Es besteht aus einem Gehäuse mit eingebetteten Festbettkammern, den sogenannten ‚Packed Beds‘, die jeweils mit Kieselgel-Pellets ausgekleidet sind, um die Adsorption oder Desorption von Wasser zu begünstigen. In einer ‚trockenen‘ Kammer wird Wasser entzogen, in einer ‚feuchten‘ Kammer wird Wasser wieder an die Luft abgegeben.

Jedes Kammerpaar wird von einem Gitterschaum aus Aluminium überspannt, der zur Wärmeübertragung dient. Der Wasserrückgewinnungsprozess findet in simultanen Halbzyklen statt, bei denen Luft in die trockenen Kammern gelangt während gleichzeitig Luft aus den feuchten Kammern wieder austritt. In einer trockenen Kammer wird Wasser aus der Luft vom Kieselgel exotherm adsorbiert und das Gas für die Wasserrückgewinnung entfeuchtet. Anschließend wird die Luft in ein CO2-Abscheidesystem geleitet. Die CO2-freie Luft strömt dann zurück in eine feuchte Kammer.

In der Zwischenzeit wird die durch die Adsorption in der trockenen Kammer entstandene Wärme über das Aluminiumgitter an die feuchte Kammer geleitet, was dazu führt, das Wasser aus dem Kieselgel desorbiert und wieder in die Luft zurück gelangt. Dieser Wärmetransfer hat den zusätzlichen Vorteil, dass die Temperatur in der trockenen Kammer gesenkt wird und so eine länger andauernde Adsorption ermöglicht. Das Wasser wird anschließend zurück in die Kabine gepumpt, das CO2 wird in den Weltraum geleitet. Nachdem die Kabinenluft aus dem IBD ausgeströmt ist, tritt sie in einen Wärmetauscher und einen Fliehkraftabscheider ein. Dadurch kann das flüssige Wasser abgeschieden und für die Wiederverwendung gesammelt werden.

Simulation der Gasströmung

Das Team von Knox verwendete Comsol Multiphysics zur Modellierung eines vierreihigen IBD, um die Effizienz des Gerätes zu berechnen. Die Geometrie des IBD wurde zunächst mit Pro/Engineer erstellt und anschließend mit Livelink for Pro/Engineer in Comsol Multiphysics importiert. „Mit Comsol können wir diese Art multiphysikalischer Simulationen mit komplexen Geometrien durchführen“, erläutert Knox. „Wir mussten die Strömung in porösen Medien in den Festbettkammern und die Wärmeübertragung in einer Vielzahl an Materialien simulieren, außerdem mussten wir die Randbedingungen für den Druck eingeben und die Sorptionsraten ermitteln“, sagt Jim Knox. Das Team konnte in den trockenen Festbettkammern beim Hinunterströmen des Gases einen Temperaturanstieg feststellen. Umgekehrt sank die Temperatur in den feuchten Kammern beim Heraufströmen des Gases.

Ein weiteres Mitglied des Teams, Rob Coker, berechnete die Effizienz des IBD mit einem richtungsweisenden Versuch, bei dem Luft durch ein trockenes Fach gepumpt wurde. Zu Beginn war die aus dem Fach austretende Luft vollständig trocken – die gesamte Luftfeuchtigkeit wurde vom Kieselgel adsorbiert. Als immer weiter Luft durch die Kammer strömte, stieg die Konzentration der Luftfeuchtigkeit am Auslass an. Schließlich hatte sie dieselbe Feuchte wie die einströmende Luft, da die Kieselgel-Pellets kein weiteres Wasser aufnehmen konnten. Die Beobachtung dieses Prozesses ermöglichte es dem Team, Parameterwerte für das IBD-Modell zu ermitteln, und sie verglichen die simulierten Daten mit den Messergebnissen. Mithilfe von Comsol konnten sie die Konzentration des Wassers, die Strömungsraten und die Drücke unter Berücksichtigung der Randbedingungen für Einströmen, Ausströmen und den Wechsel von feuchter und trockener Luft in jedem Halbzyklus nachverfolgen.

Gemäß den Simulationsergebnissen entfernte das IBD 85 Prozent des Wassers aus der Luft und führte es zum Sammeln wieder zurück in die Atmosphäre. Das virtuelle Modell sagte die Effizienz des IBD erfolgreich vorher, was die Grundlage für weitere Designabstimmungen von thermisch verbundenen Festbettkammern bildet.



Sie sind für die Computersimulation der Luftaufbereitung am Nasa MSFC verantwortlich (v.l.n.r.): Rob Coker, Carlos Gomez, Greg Schunk und Jim Knox.
Bild: Comsol Multiphysics GmbH

Verlässlicher Ansatz zur Luftaufbereitung

Die Simulation mit Comsol Multiphysics lieferte dem Team der Nasa wertvolle Vorgaben für die Optimierung und das Design der Wasser-Wiederaufbereitungsanordnung. Durch Senkung des Energiebedarfs und Maximierung der zurückgewonnenen Wassermenge vor dem CO2-Abscheideprozess wird die Effizienz des IBD enorm gesteigert. Dies stellt einen der vielen wichtigen Bestandteile eines Aufbereitungssystems dar, mit dem die Reichweite von Raumfahrtmissionen vergrößert werden soll. Darüber hinaus nutzt das Team die Simulation mit Comsol, um neue Systeme für längere Missionen zu entwickeln, die die Trennung von Sauerstoff und CO2 ermöglichen. So kann die Menge an O2, die an Bord mitgeführt werden muss, deutlich reduziert werden. Mit diesen innovativen Designs und den leistungsstarken Möglichkeiten der Simulation werden bemannte Raumfahrzeuge bald noch weiter reisen können als je zuvor.


Das könnte Sie auch interessieren:

Siemens beendet das erste Halbjahr des laufenden Geschäftsjahres mit positiven Neuigkeiten. Umsatzerlöse und Gewinn legen kräftig zu.‣ weiterlesen

Insgesamt 8,2Mrd.€ hat der Maschinen- und Anlagenbau im Jahr 2019 für Forschung und Entwicklung ausgegeben. Auch in der Pandemie behalten F&E-Ausgaben einen hohen Stellenwert.‣ weiterlesen

Seit rund 100 Jahren steht die Automobilindustrie wie keine andere für die Fabrikarbeit am Fließband. Doch jetzt deutet sich eine Technologiewende an. Künftig könnten Fahrerlose Transportfahrzeuge Karosserien, Material und ganze Fahrzeuge durch die Fabrik bewegen. In mehreren Modellfabriken fahren die Automaten bereits durchs Werk.‣ weiterlesen

Immer mehr Anlagen sollen Betriebsdaten im IoT zur Bearbeitung bereitstellen. Mit dem Susietec-Portfolio will Kontron insbesondere den Aufbau von IoT-Lösungen für bestehende Anlagen unterstützen. Der Anbieter von IoT- und Embedded-Computing-Technologie rechnet für 2021 mit mehr als 50 Prozent Wachstum in diesem Geschäftsfeld.‣ weiterlesen

Im März haben die Bestellungen im Maschinen- und Anlagenbau im Vergleich zum Vorjahr deutlich zugelegt. Dabei kamen sowohl aus dem Aus- als auch aus dem Inland positive Signale.‣ weiterlesen

Vor wenigen Jahren galt MES-Software vielen noch als Spezialsoftware mit nur aufwendig erschließbarem Nutzen. Inzwischen ist sie fester Bestandteil der meisten prozessnahen IT-Architekturen in der Prozess- und gerade der Pharmaindustrie. Insbesondere wenn viele Systemfunktionen auf die Prozessführung nach ISA95 entfallen und chargenorientiert produziert wird.‣ weiterlesen

Automobilhersteller agieren bislang erfolgreich in ihren eher geschlossenen Wertschöpfungsketten. Sie verstehen den Markt als Nullsummenspiel. Unternehmen wie Apple haben vorgemacht, dass es auch anders geht: Von offenen Ökosystemen können alle profitieren. Wann öffnet sich die Automobilindustrie für diese Idee?‣ weiterlesen

Mit dem Wechsel von Kathleen Mitford zu Microsoft wird Catherine Kniker zur EVP (Executive Vice Presdient) und Chief Stategy Officer bei PTC ernannt.‣ weiterlesen

Gemeinsam mit CEO Peter Sorowka leitet Carsten Stiller seit 1. April das Softwareunternehmen Cybus. Er verantwortet die Bereiche Marketing und Vertrieb.‣ weiterlesen

Siemens Digital Industries bekommt einen neuen CTO. Dirk Didascalou soll zum 1. September neuer Technikchef werden.‣ weiterlesen

Die Wirtschaft blickt überwiegend optimistisch in die Zukunft: Knapp 40 Prozent der Unternehmen wollen laut der jüngsten Konjunkturumfrage des Instituts der deutschen Wirtschaft 2021 im Vergleich zu 2020 mehr produzieren.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige