Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Lebenszyklusmanagement für die Instandhaltung

In der Wertschöpfungskette von Investitionsgütern kommt der Instandhaltung eine wachsende Bedeutung zu. Ausgewählte Produkte oder Anlagen werden trotz geringer Gewinnspannen abgegeben, um Zugang zum lukrativen Service-Markt zu erhalten. Um auf diesem Markt erfolgreich agieren zu können, leisten IT-Systeme zum Lebenszyklusmanagement einen Beitrag, indem sie notwendige Produktdaten verfügbar machen.

Laut einer Studie des Fraunhofer-Instituts für Produktionsanlagen und Konstruktionstechnik Berlin (IPK) schätzen Instandhalter die mit Softwareeinsatz zu realisierende Zeitersparnis, Prozesstransparenz und Kostenreduktion. Die Untersuchung ‚Markt- und Trendstudie 2011 – Maintenance, Repair and Overhaul‘ von Eckart Uhlmann, Markus Röhner, Jeanette Behrendt und Bart van Duikeren ist im Jahr 2011 in Berlin erscheinen. Bild: Contact Software

Bei immer mehr Unternehmen wird heute ein Großteil der Wertschöpfung durch Dienstleistungen entlang des Lebenszyklus von Investitionsgütern realisiert. Verstärkt wird dieser Trend unter anderem durch sinkende Neuinvestitionen, wodurch viele alte Anlagen zunehmend länger laufen müssen. Dies lässt die Nachfrage nach Dienstleistungen im Bereich Instandhaltung weiter steigen. Instandhaltung, auch als ‚Maintenance, Repair and Overhaul‘ (MRO) bezeichnet, ist die Grundlage, um Systeme langfristig verfügbar, effizient und sicher zu betreiben. Damit sich Investitionen in Maschinen und Anlagen, in Transport-Systeme und Produktionseinrichtungen wirtschaftlich darstellen, ist der Betrieb innerhalb der spezifizierten Grenzen und mit maximaler Verfügbarkeit der Systeme gefordert. Die geforderte Qualität muss in Produktion, Dienstleistung und den Fertigungsprozessen allgemein eingehalten werden. Die Bedeutung von IT-Systemen für das Daten- und Prozessmanagement in der Instandhaltung wächst somit insbesondere in Bezug auf Engineering-Prozesse.

Anders als häufig im Bereich der Konsumgüter kann eine komplexe Anlage nicht einfach ausgetauscht werden, wenn sie die Spezifikation kurzfristig aufgrund von Verschleiß oder unfallbedingten Schäden verlässt. In Flugzeugen beispielsweise sind viele Komponenten nicht betriebs-, sondern zeitfest ausgelegt. Lebensdauerbegrenzungen oder ‚Life Limits‘ legen fest, nach wie vielen Belastungszyklen oder Betriebsstunden eine Instandhaltungsmaßnahme folgen muss. Somit wird die Instandhaltung zu einem unverzichtbaren Prozessbestandteil im Betrieb von Investitionsgütern, der mit unterschiedlichen Aktivitäten konstruktiv bedingte Einschränkungen von Produkten kompensiert. Das betrifft zum Beispiel die Anforderung zur Gewichtseinsparung im Flugzeug- und Fahrzeugbau zur Reduktion von Treibstoffbedarfen auf Kosten der Lebensdauer. Sollen Instandhaltungsanforderungen und Kostenziele aus dem Produktlebenszyklus insgesamt erfasst werden, können Kostenaufstellungen wie ‚Service Cost‘, ‚Life Cycle Cost‘ und ‚Total Cost of Ownership‘ (LCC, TCO) einbezogen werden. Entsprechende Informationen lassen sich anschließend IT-gestützt zu weiteren Maßnahmen wie Einsparung von Treibstoffen, Reduktion und Vermeidung schädlicher Chemikalien in Beziehung setzen. Eine entsprechend ausgelegte Instandhaltung kann somit ein Mittel zur Senkung der Betriebskosten und einen Beitrag zur Nachhaltigkeit leisten.

Reparaturen individualisieren baugleiche Investitionsgüter

Die Instandhaltung von Investitionsgütern umfasst laut DIN 31051 die Inspektion, Wartung, Instandsetzung und Verbesserung – üblicherweise Modernisierung – technischer Systeme. Dies kann in unterschiedlichen internen oder externen Instandhaltungsaufträgen geschehen. Von Ersatzteildiensten bis hin zu komplexen Überholungsprojekten finden sich im industriellen Umfeld diverse Instandhaltungsvorgänge. Neben zeit-, betriebs- und zustandsbedingten Instandhaltungsintervallen kommt es immer wieder auch zu ungeplanten Vorfällen. Diese ergeben sich zum Beispiel aus Unfällen oder Systembetrieb außerhalb gewünschter Bedingungen, wie Schwankungen in der Treibstoffqualität einer stationären Turbine. Eine große Herausforderung besteht in der hohen Varianz der Investitionsgüter, da hier so gut wie keine Anlage der anderen baugleich entspricht. Selbst bei gleicher Planung entstehen zum Beispiel bei Dampfturbinen oft im Aufbau Abweichungen von der Konstruktion durch erste Anpassungen im Feld.

Diese Änderungen werden durch ‚Redlining‘ in Zeichnungen festgehalten und so für spätere Instandhaltungsmaßnahmen dokumentiert. Auch baugleiche Flugzeugturbinen unterscheiden sich im Detail durch individuelle Reparaturen. Umlaufbestände von Ersatzteilen führen in der Luftfahrt und auch in der Bahntechnik häufig dazu, dass eine Komponente in ihrem Lebenszyklus in verschiedenen Systemen eingesetzt wird. Zudem können Systeme im Lebenszyklus durch Rekonfiguration an neue Kundenanforderungen oder Betriebsbedingungen angepasst worden sein. Somit stellt die Verfolgung von Bauzuständen und der Konfigurationsverwaltung im Sinne des As-Built Managements eine zentrale Herausforderung dar, damit Instandhaltungsmaßnahmen effizient geplant und durchgeführt werden können.

google plus


Das könnte Sie auch interessieren:

Unvorbereitet durch das Zeitalter der Digitalisierung zu navigieren, birgt für Unternehmen ein hohes Risiko zu scheitern. Die Bosch-Tochter BSH Hausgeräte GmbH erkannte das früh und bereitet die 50.000 Mitarbeiter mit der Leitlinie 'We prepare' konsequent auf den Wandel vor.‣ weiterlesen

Schaeffler Technologies aus Herzogenaurach arbeitet laufend daran, die eigenen Produktions- und Intralogistikprozesse zu verbessern. Beim Neubau eines Distributionszentrums waren die Ansprüche gerade an das Zusammenspiel von Automation und Software entsprechend hoch.‣ weiterlesen

Der Fachkräftemangel wird als größte Hürde auf ihrem Weg zur Digitalisierung angesehen und die Ausbildungseinrichtungen stellen sich zunehmend darauf ein. Um den Nachwuchs gezielt auf die Arbeit in der vernetzten Industrie vorzubereiten, hat etwa die Hochschule Dresden eine Industrie-4.0-Modellfabrik aufgebaut.‣ weiterlesen

Oetinger Aluminium probt für den Ernstfall: Angenommen, die IT-Systeme des Unternehmens fallen einem Hackerangriff zum Opfer. Was passiert dann? Es gilt, den Überblick zu behalten und so die Folgen wie Datendiebstahl, Spionage oder den Ausfall von Systemen möglichst gering zu halten – also einfach den Notfallplan zu befolgen. Die Realität ist jedoch eine andere: Wie bei knapp der Hälfte aller Industrieunternehmen in Deutschland wäre auch hier kein Notfallplan zur Hand.1 Ab sofort stellt sich Oetinger diese Fragen nicht mehr, denn die IT-Abteilung hat jetzt eine softwarebasierte Notfallplanung im Einsatz.‣ weiterlesen

Anzeige
Anzeige
Anzeige