Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Kapazitive Eingabegeräte

Vom Sensor zum Human Machine Interface

Die Funktionalität kapazitiver Touch-Eingabesysteme hängt von der sensiblen Abstimmung der im System verbauten Komponenten ab. Im Entwicklungsprozess ist daher zu beachten, dass insbesondere das Zusammenführen der Komponenten aus verschiedenen Quellen und unklar definierte Verantwortungen in der Prozesskette Schwierigkeiten bereithalten können. Einen Ansatz zur Vermeidung des Problems bietet die Hummel AG.

Bild: Hummel

Die Eingabe mittels kapazitiver Systeme für die Steuerung von Human Machine Interfaces (HMI) ist in weiten Bereichen vom Markt längst akzeptiert. Neue Technologien ermöglichen es, anwenderfreundliche und zuverlässige Projected Capacitive-Touchsysteme (PCAP) auch für industrielle Anwendungen herzustellen. Doch zuvor gilt es mögliche Fehlerquellen zu bedenken. Ein kapazitiver Touchscreen, bestehend aus Sensor und der Auswerteelektronik, interagiert permanent mit seinem kapazitiven Umfeld. Somit werden neben der gewünschten Information einer Berührung noch andere Störsignale detektiert.

Diese können Fehlauslösungen verursachen oder aufgrund der Störungen die eigentliche Berührung nicht mehr erkennen lassen. Bei der Messung eines kapazitiven Sensors gilt es immer das schwache Signal, das durch den Finger oder Stylus generiert wird, vor dem Rauschen des Systems und anderer dynamischen Störer aus dem Umfeld zu unterscheiden. Je nach Verfahren wird die Kapazitätsänderung inklusive der vorhandenen Störung ermittelt und das Messergebnis ist nicht mehr eindeutig als Touchvorgang auszuwerten.

Statische Einflüsse

Nicht nur dynamische Störungen haben Einfluss auf das Auswerteergebnis, sondern auch statische Einflüsse wie metallische Gegenstände, Leitungen, LCD-Rahmen oder auch die gläserne Touchfront erhöhen die parasitäre Kapazität. Das bedämpft die Messung und das gewonnene Messergebnis erscheint gering. Sinkt der Signal-Rausch-Abstand zu stark, kann es zu Fehlauslösungen oder Nicht-Erkennungen kommen. Ist dem Designer die Funktionsweise der Auswerteelektronik nicht ausreichend bekannt und ist unklar, wie der Pfad der Ladungsverschiebung innerhalb des Sensors und des Systems abläuft, kann das Problem nur schwer nachvollzogen werden. Insbesondere bei leitungsgebundenen Störungen kann nun ein Fehler auftreten.

Neben den genannten Ursachen für die Bedämpfung gibt es noch weitere, die meist nicht berücksichtigt werden: Farbsysteme auf dem Touchglas aufgebracht, Klebeverbindungen zu Rahmen oder Trägersystemen, das optische Bonding von Touchglas und Glassensor, Feuchtigkeit aufnehmende Kapillaren oder auch schiefe und verzogene Einzelkomponenten. Die meisten dieser Ursachen haben direkten Einfluss auf die Zuleitungen, die außerhalb des sichtbaren Bereichs die Elektroden des Sensors mit der Auswertelektronik verbinden.

Vom Ende her auslegen

Es ist sinnvoll die Auslegung des HMI vom fertigen Produkt aus zu wählen und die festgelegte Spezifikation auf die Einzelkomponenten zu übertragen. Einfach umzusetzen ist das bei der Größe und Bildschirmdiagonale, wobei schon hier der Randbereich des Sensors entscheidend mit einfließt und in der Planung des erforderlichen Platzes berücksichtigt werden sollte. Aufwendiger und technisch herausfordernder sind die Festlegungen, die in direkter Interaktion mit dem Touchverhalten stehen. Dazu gehören das optische Bonding zum Cover Glas und zum LCD, die Stärke des Coverglases, Position und Material des Trägersystems, der Abstand zwischen Touch und LCD et cetera. Auch die gewünschte Umweltspezifikation fließt in die Systemauslegung mit ein, wie Temperaturbereich, Schock, Vibration, Schlagfestigkeit und nicht zuletzt die Funktion im Zusammenhang mit Feuchtigkeit oder Wasser.


Das könnte Sie auch interessieren:

Viele Fachbereiche sehen sich nach solchen Zusammenschlüssen mit den Themen System- und Datenmigration konfrontiert. Entsprechende Projekte stellen neue Anforderungen an den bisherigen Umgang mit Daten, deren Qualität und Integration über verschiedene Unternehmenssysteme, Sparten und Gesellschaften hinweg.‣ weiterlesen

Mit romantischen Wassermühlen in idyllischer Natur haben moderne Sägewerke nichts mehr gemein. Die rund 2.000 Betriebe in der Branche arbeiten mit leistungsstarker, zum Teil bereits in einer Cloud betriebenen Sägewerkstechnik. Die Pollmeier Massivholz GmbH & Co. KG betreibt die größten Laubholzsägewerke Europas. Am Standort Aschaffenburg setzt Pollmeier mit dem neu etablierten Shopfloor Management auf eine gezielte Problemlösungskultur.‣ weiterlesen

Künstliche Intelligenz und Machine Learning gehören aktuell zu den ganz großen Themen, denn intelligente ERP-Systeme können betriebliche Erfahrungen und Firmenwissen in ihren Handlungsempfehlungen berücksichtigen.‣ weiterlesen

Der 15. Forcam Innovation Day lieferte gleich mehrere Antworten auf die Frage, wozu wir Industrie 4.0 eigentlich bräuchten. Heinrich Munz von Kuka sagte etwa: "Wir brauchen Industrie 4.0 für unser Wohlergehen und für die Zukunft unserer Kinder." Angesichts der wachsenden Weltbevölkerung wäre der globale Produktbedarf andernfalls kaum dauerhaft zu bedienen. Im Mittelpunkt der Veranstaltung standen Konzepte und Projekte rund um die vernetzte Fabrik.‣ weiterlesen

Die vier Softwarehäuser Cimdata Software, Logis, Oxaion und Syncos kooperieren zukünftig unter der neuen Dachmarke Modula. Ziel ist es, mittelständische Produktionsunternehmen bei der Umsetzung der digitalen Transformation zu unterstützen.‣ weiterlesen

Zum 1. April übernimmt Beckhoff Automation die ADL Embedded Solutions GmbH mit Sitz in Siegen. ADL gilt als Spezialist für Deep Embedded-Anwendungen auf Basis von Motherboards und speziell abgestimmter Peripherie.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige