Anzeige
Anzeige
Beitrag drucken

Industrieroboter in Leichtbauweise

Energieeffiziente Seilroboter

Auf dem Kongress der SPS IPC Drives 2013 in Nürnberg wurde erstmals der Innovationspreis der Automatisierungsindustrie verliehen. Der erste Preis wurde für ein Projekt des Fraunhofer-Instituts für Produktionstechnik und Automatisierung IPA zur 'Energieeffizienz von Seilrobotern' verliehen: Durch die Reduktion von Seilkräften lassen sich Verbräuche senken und die Mechanik schonen.

Bild: Fraunhofer IML

Energieeffizienz spielt eine steigende Rolle in der Gestaltung von Produktionsprozessen. Vor diesem Hintergrund hat das Fraunhofer IPA ein neues Verfahren zur Reduktion von Seilkräften beim Einsatz von Seilrobotern vorgestellt: Die Konstruktion setzt auf bewährte Standardkomponenten und Steuerungstechnik und fügt diese zu einem intelligenten Robotersystem zusammen. Eine mögliche Vorgehensweise, um den Energieverbrauch klassischer Robotersysteme zu senken, ist die konsequente Anwendung von Leichtbauprinzipien. Parallele Seilroboter erfüllen die Forderung nach Anwendung von Leichtbauprinzipien schon teils aus sich heraus: Zur Kraftübertragung werden Kunstfaserseile statt schwerer Metallarmglieder verwendet. Darüber hinaus sind die Seilwinden mit der kompletten Antriebstechnik fest mit dem Maschinenrahmen verbunden, sodass der Seilroboter nur eine gering bewegte Masse besitzt. Daraus resultieren neben hoher Energieeffizienz eine Reihe weiterer positiver Eigenschaften gegenüber konventionellen Robotersystemen: Es lassen sich nahezu ohne zusätzlich bewegte Massen sehr große Arbeitsräume mit einer Kantenlänge von deutlich mehr als zehn Metern realisieren.

Durch diesen Aufbau wird zudem ein Eigengewicht zu einem Nutzlastverhältnis von unter 1:5 erreicht, während typische serielle Industrieroboter ein Verhältnis von lediglich 10:1 aufweisen. Im Gegensatz zu einem Kran wird die Last bei einem Seilroboter von mehreren Seilen getragen. Dadurch wird das Nachschwingen der Last unterbunden. Durch die wechselseitige Verspannung der Seile weist die Plattform eine hohe Steifigkeit gegenüber externen Kräften auf. Die Roboter sind bezüglich ihres Arbeitsraumes, Dynamik und Nutzlasten in weiten Bereichen skalierbar. Vergleichbar mit Delta-Robotern sind Beschleunigungen von mehr als 10G realisierbar. Unter Verwendung von Kranwinden kann die Nutzlast im Bereich von wenigen Kilogramm bis zu mehreren Tonnen liegen. Der Arbeitsraum lässt sich durch Winden mit entsprechendem Seilhub kosteneffizient vergrößern. Der am Fraunhofer IPA aufgebaute Seilroboter Ipanema 3 basiert auf Seilwinden mit einer maximalen Seilkraft von 3.000 Newton bei einem Hub von 23 Metern.

Algorithmus zur Senkung der Energieaufnahme

Um die Energieeffizienz von Seilrobotern zu erhöhen, müssen die Seilkräfte am Roboter näher betrachtet werden. Für den sicheren Betrieb des Roboters ist es erforderlich, die Seile durch eine Seilkraftregelung unter Spannung zu halten. Diese Verspannung der Seile erfordert einen beträchtlichen Energieaufwand. Durch den redundanten Aufbau des Roboters – acht Seile steuern sechs Freiheitsgrade der Roboterplattform – können die Seile wechselseitig verspannt werden, ohne externe Kräfte hervorzubringen. Gleichzeitig steigt jedoch der Energieverbrauch. Ziel ist es daher, die Seilkräfte so einzustellen, dass einerseits die Leistung des Gesamtsystems hinsichtlich Dynamik, Stabilität, Sicherheit und Nutzlast erhalten bleibt. Andererseits sollten die eingesetzten Seilkräfte hinsichtlich des Energieverbrauchs nur so groß sein wie nötig. Das neu entwickelte Verfahren zur Sollwertvorgabe von Seilkräften erhält die Leistungsdaten des Systems, während der Energieverbrauch minimiert wird. Gegenüber bisherigen Implementierungen lässt sich dadurch die Leistungsaufnahme auf einer Referenztrajektorie um bis zu 20 Prozent senken. Ein weiterer Vorteil: Die niedrigeren Kräfte schonen die Seile und Mechanik.


Das könnte Sie auch interessieren:

Wer Produktion und Logistik in einer Echtzeit-Visualisierung abbildet, kann niedrigschwellig in die digitale Transformation einsteigen und viel Papier aus dem Shopfloor bannen. Ergänzt um zentrale MES-Funktionen lassen sich solche Visualisierungssysteme zur Operational Excellence-Plattform ausprägen, die bei fortlaufenden Prozessoptimierungen unterstützt.‣ weiterlesen

Industrielle Trends wie IIoT und Digitalisierung setzen immense Datenströme voraus. Doch im Gegensatz zur IT-Security für Büros müssen Fabrikbetreiber auf wesentlich mehr Stolpersteine achten, damit ihre Anlagen nicht schon einfachen Angriffen zum Opfer fallen.‣ weiterlesen

Ab und zu fehlte ein Schlüssel im Kloster der Franziskanerinnen der ewigen Anbetung von Schwäbisch Gmünd. Beim letzten Mal gab das den Impuls, anstatt neue mechanische Zylinder in die rund 220 Türen des Komplexes einzubauen, die alte Technik durch das Bluesmart-System von Winkhaus zu ersetzen.‣ weiterlesen

Mit 100,5 Punkten hält sich das IAB-Arbeitsmarktbarometer im November stabil und liegt weiter im leicht über der neutralen Marke. Auf europäischer Ebene sank der Frühindikator allerdings erneut.‣ weiterlesen

In einer neuen Expertise des Forschungsbeirats Industrie 4.0 untersuchen das FIR an der RWTH Aachen und das Industrie 4.0 Maturity Center den Status-quo und die aktuellen Herausforderungen der deutschen Industrie bei der Nutzung und wirtschaftlichen Verwertung von industriellen Daten und geben Handlungsempfehlungen für Unternehmen, Verbände, Politik und Wissenschaft.‣ weiterlesen

Im Forschungsprojekt FabOS soll eine KI-Bin-Picking-Anwendung entstehen, die ein verbessertes Erkennen, Greifen und definiertes Ablegen von Blechteilen in der Produktion ermöglicht.‣ weiterlesen

Die Digitalisierung des Qualitätsmanagements stellt Unternehmen vor Herausforderungen. Daher haben das Fraunhofer IPT und die FH Südwestfalen im Forschungsvorhaben 'Qbility - Quality 4.0 Capability Determination Model' ein datengetriebenes Reifegradmodell entwickelt, das die Anforderungen eines digitalisierten Qualitätsmanagements bei KMU adressiert.‣ weiterlesen