Anzeige
Anzeige
Anzeige
Beitrag drucken

Grüne Embedded-Systeme

Eingebettete Systeme sind weit verbreitet, entsprechend summieren sich auch die Einsparungen beim Verbrauch der Rechner. Doch die Einführung energiesparender Gerätegenerationen könnte an den Mehrkosten für die Hersteller scheitern.

Bild: Fraunhofer IIS/ARM

So genannte ‚Embedded Systems‘ finden sich in zahlreichen Geräten, vom Fernseher bis zu Automatisierungskomponenten der Produktionstechnik. Das Schlagwort ‚Eingebettetes System‘ bezeichnet einen Rechner, der aus Hard- und Softwarekomponenten besteht und eine festgelegte Aufgabe in einem technischen Umfeld erledigt. Gerade die große Verbreitung dieser Komponenten bietet signifikantes Potenzial für Energieeinsparungen. Reduziert man etwa die elektrische Leistungsaufnahme eines kontinuierlich laufenden DSL-Routers um ein Watt, so lassen sich bei einer Million Geräte 8,8 Millionen Kilowattstunden pro Jahr einsparen. Das entspricht der Energiemenge, die zwei mittelgroße Biogaskraftwerke in der gleichen Zeit erzeugen.

Powermanagement in eingebetteten Systemen

Ziel von ‚Green Embedded Systems‘ ist es, die Energieaufnahme sowohl im Regelbetrieb als auch im Standby deutlich zu reduzieren, ohne dass der Benutzer Einschränkungen in Funktionalität oder Leistungsfähigkeit hinnehmen muss. Es gibt drei Hauptansatzpunkte, um die Energieeffizienz eines eingebetteten Systems zu steigern:

  • Verwendung besonders energiesparender Bauelemente auf Hardwareebene und Design effizienter Netzteilstrukturen
  • Effizientes Powermanagement im Bereich der hardwarenahen Betriebssystemfunktionalität
  • Effizientes Powermanagement auf Seite der Applikationssoftware

Für die Energieeffizienz des eingebetteten Systems spielt bereits die Auswahl der Hardwarekomponenten eine entscheidende Rolle. Das Einsparpotenzial, das im Hardwaredesign nicht genutzt wurde, kann auch durch Powermanagement im Bereich des Betriebssystems und der eigentlichen Systemanwendung kaum kompensiert werden. In den letzten Jahren konnten die Halbleiterhersteller Komponenten wie Prozessoren, Speicher und Kommunikationsschnittstellen hinsichtlich der Energieaufnahme deutlich optimieren. Eine besondere Rolle spielt dabei der Speicher. Im Gegensatz zum PC-Bereich verbrauchen Speicherbausteine in eingebetteten Systemen je nach Typ mindestens ebenso viel Energie wie der Prozessor.

Insbesondere die Beliebtheit von Embedded Linux als Betriebssystem mit seinem erhöhten Ressourcenbedarf erfordert häufig mehr Speicherplatz und erhöht somit den Energieverbrauch. Meist scheitert ein energieeffizientes Hardwaredesign auch an mangelnder Verfügbarkeit und den hohen Kosten passender Speichertypen. Auch das Netzteildesign trägt einen entscheidenden Anteil an der Energieaufnahme eines eingebetteten Systems. Moderne elektronische Bauelemente benötigen eine Vielzahl verschiedener Spannungen, die aus Kostengründen meist aus einer festen Spannung abgeleitet werden. Für solche Netzteilstrukturen spielt neben der richtigen Architektur vor allem die Auswahl effizienter Spannungsregler eine große Rolle.

Powermanagement im Betriebssystem

Das Energiesparpotenzial im Softwarebereich hängt grundlegend davon ab, wie viel das System innerhalb eines Zeitraums leisten muss. Kontinuierlicher Volllast-Betrieb unter Nutzung aller Kommunikationsschnittstellen verhindert häufig eine signifikante Einsparung bei der Energieaufnahme. Batteriebetriebene eingebettete Systeme mit einer garantierten Laufzeit von zehn Jahren befinden sich den größten Teil der Zeit im energiesparenden Standby-Betrieb. Nur während einer kurzen Aktivitätsperiode, für die sie aus dem Ruhezustand ‚aufwachen‘, führen sie ihre eigentliche Aufgabe aus. Komplexe und leistungsfähige Systeme verhalten sich vergleichbar. Allerdings ergeben sich bei diesen Anwendungen kaum Phasen, in denen über einen längeren Zeitraum die komplette Verarbeitung abgeschaltet werden kann.

Diese Applikationen erfordern andere Strategien zur Energieeinsparung. So reduziert das Powermanagement bei einem geringeren Bedarf an aktueller Prozessorleistung zuerst die Taktfrequenz des Prozessors. In einem nächsten Schritt lässt sich dann die Versorgungsspannung des Prozessors herunter regeln. Eine alternative Lösung bietet das gezielte Umschalten des Prozessors zwischen Standby- und Volllast-Betrieb. Leider weisen nur neuere Controller eine geeignete Architektur auf, um diese Schaltvorgänge in wenigen Taktzyklen effizient und automatisiert durchzuführen. Eine besondere Rolle für die Beeinflussung von Prozessorbetriebsarten, -takt oder -spannung spielt die interne Zyklusrate des Betriebssystems. Embedded Linux hat in der Regel eine Zykluszeit von zehn Millisekunden. Nur in diesem Zeitraster kann es Powermanagementfunktionen steuern.

Dagegen bietet ein am Fraunhofer IIS speziell für Energieeffizienz ausgelegtes und funktional erweitertes Echtzeitbetriebssystem Reaktionszeiten von einer Millisekunde. So kann auch bei Inaktivitäten im Bereich einer Millisekunde der Controller gezielt in den Low-Power-Betrieb versetzt werden, woraus sich weitere Energieparmöglichkeiten für das System ergeben.


Das könnte Sie auch interessieren:

Martin Strempel ist neuer Business Development Manager Data Analytics beim beim MES-Anbieter Itac Software. In seiner bisherigen Laufbahn bei der BMW Group war er u.a. für die Produktionssteuerung im Werk in München verantwortlich und entwickelte Manufacturing Execution Systeme (MES) weiter.‣ weiterlesen

Bundesweit gab es im ersten Quartal 2021 1,13Mio. offene Stellen und damit mehr als im gleichen Zeitraum 2020. Im Vergleich zum 4. Quartal 2020 gingen die offenen Stellen jedoch zurück.‣ weiterlesen

Wie kann die Qualität der Batteriezelle bereits während der Fertigung vorhergesagt und entsprechende Prozessparameter in Echtzeit angepasst werden? Dies ist eine der Fragen, die der digitale Zwilling einer Batteriezelle beantworten soll. Ein Traceability-System stellt als digitaler Faden die Aggregation der Daten über die Prozesskette sicher - damit jede Batteriezelle ihr eigenes digitales Abbild erhält.‣ weiterlesen

In ihrer Beschaffenheit sind Manufacturing Execution Systems die wohl beste Plattform, um auch die Handmontage digital abzubilden. Doch wie sehen Lösungskonzepte aus, die neben Fertigungsanlagen, Maschinen und Robotern auch Menschen miteinbeziehen?‣ weiterlesen

Zeiss übernimmt das US-Unternehmen Capture 3D und baut die Kompetenz im Bereich 3D-Mess- und Inspektionslösungen aus.‣ weiterlesen

Viele Unternehmen organisieren ihre Produktionsvorbereitung analog und ohne Zugang zur 3D-Konstruktion. Neue Anwendungen könnten diese Schritte zwischen Design und Fertigung künftig erleichtern, indem sie 3D-Modelle von Produkten samt zugehöriger Daten und etwaige Designänderungen laufend zur Verfügung stellen.‣ weiterlesen

Das IT-Beratungs- und Softwarehaus Valantic partnert künftig mit Systema, einem eigentümergeführten Systemintegrator, der sich auf Softwarelösungen und Dienstleistungen zur MES-Integration, Fertigungsautomatisierung und Produktionsoptimierung spezialisiert hat.‣ weiterlesen

Wenn Lieferzahlen und Produktvarianz steigen, wächst auch das Kommunikationsaufkommen in den Netzwerken. Um solchen Flaschenhälsen vorzubeugen, hat Škoda auf eine cloudbasierte Netzwerklösung umgerüstet.‣ weiterlesen

Dokumentation ist ein wesentlicher Bestandteil jeder nachhaltigen Datenarchitektur. Entwickler-Teams vernachlässigen das oft aus praktischen Gründen, denn sie stehen unter enormen Termindruck und werden eher nach dem Code beurteilt, als danach, wie gut sie ihn dokumentieren.‣ weiterlesen

Künstliche Intelligenz auf Werksebene dient meist der Optimierung oder der Analyse komplexer Zusammenhänge. In der Produktionsplanung zum Beispiel können bessere Algorithmen, getragen von mehr Rechenleistung, heuristische Ansätze im Ergebnis deutlich übertreffen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige