Forschungsprojekt „Marion“

Mobile Maschinen im dynamischen Verbund

Das Ziel des Forschungsprojektes ‚Marion‘ besteht darin, durch die intelligente Abstimmung von autonomen Maschinen die wirtschaftliche Effizienz der Intralogistik zu steigern. Dabei stehen keine Teilprozesse, sondern die gesamte Wertschöpfungskette auf dem Prüfstand. Das dynamische Planungssystem setzt Daten aller an einem Arbeitsprozess beteiligten autonomen Maschinen sowie Daten über die Arbeitsumgebung miteinander in Bezug. Veränderungen, die während eines Arbeitsprozesses auftreten, werden erfasst und laufend in die Ablaufplanung integriert.



Bild 1: Vollautomatische Be- und Entladung von Trailern des autonomen Transportfahrzeugs durch den autonomen Transportroboter. Bild: Atos

Der Projektname ‘Marion’ steht für mobile, autonome, kooperative Roboter in komplexen Wertschöpfungsketten. Im Fokus steht dabei ein verteiltes, dynamisches Planungssystem, das autonome, mobile Maschinen in die Lage versetzt, ein gemeinsames Produktivitätsoptimum zu erreichen und auf Veränderungen in der Umgebung eigenständig und flexibel zu reagieren. Anhand von Anwendungsfällen in der Landwirtschaft und der innerbetrieblichen Transportlogistik wird die Roboterisierung von Arbeitsprozessen unter Berücksichtigung des gesamten Wertschöpfungsprozesses demonstriert. Das Projekt entstammt der Kooperation zwischen C-Lab, der ‘Innovationswerkstatt’ der Atos AG, der Universität Paderborn, dem Intralogistik-Anbieter Still, dem Landmaschinenhersteller und Konsortialführer Claas sowie dem Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI).



Der Gabelstapler ist autonom in der Werkshalle unterwegs. Über Laserscanner erhalten die autonomen Gabelstapler Umgebungsinformationen. Die Fahrwege werden vom Planungssystem Marion übermittelt.

Automatisierte Intralogistik mit Schleppzügen

Im Teilprojekt ‘Innerbetriebliche Transportlogistik − Automatische Be- und Entladung von Schleppzügen’ müssen ein Schubmaststapler und ein Schleppzug kooperativ miteinander arbeiten. Beide Fahrzeuge agieren als Transportroboter mit unterschiedlichen Fähigkeiten. Der eingesetzte autonome Schubmaststapler, ein Still FM-X Autonom, kann Ladungsträger auch in großen Höhen aus Regalen aufnehmen oder absetzen. Der autonome Schleppzug vom Typ CX-T Autonom hingegen ist in der Lage, mit mehreren Trailern große Entfernungen zu überwinden. Das Teilprojekt wurde in Zusammenarbeit mit der Still GmbH konzipiert. Ein übergeordnetes Lagerverwaltungssystem koordiniert die Befehle: Aufgabe des Gabelstaplers ist es, Schleppzüge an deren Ausgangsort zu beladen beziehungsweise an ihren Zielorten zu entladen. Der Transportroboter muss in der Lage sein, durch eine Analyse der Umgebung sowohl den Standort der anzufahrenden Anhänger als auch die Position der aufzunehmenden Ladungsträger zu erkennen. Diese Informationen übermittelt das Fahrzeug an das Planungssystem. Von dort erhält der Roboter die Fahrwege, über die er seine Zielpunkte auf dem kostengünstigsten Weg erreicht.

Die Planung basiert dabei auf den aktuellen und durch die Onboard-Sensorik erfassten Umgebungsverhältnissen. Dazu zählen neben statischen Hindernissen, wie Regale, Produktionsanlagen oder auf dem Boden abgestellte Paletten, auch dynamische Hindernisse wie Personen oder andere Fahrzeuge. Zusätzlich werden die Transportroboter in Bereichen eingesetzt, in denen sowohl autonom als auch manuell gesteuerte Fahrzeuge unterwegs sind. Alle diese Faktoren müssen die Roboter erkennen und dem im Rahmen des Projekts entwickelten Planungssystem melden, damit sie in die Berechnung der Fahrwege integriert werden können. Der Transportroboter muss also die Fracht kollisionsfrei, betriebskostenoptimiert fahren und beachtet dabei zusätzlich auch ‘ästhetische’ Gesichtspunkte: Das bedeutet, dass der Gabelstapler mit flüssigen und gleichmäßigen Bewegungen fährt. Das ist für die Akzeptanz der autonomen Fahrzeuge wichtig, wenn sie sich in einem gemeinsamen Arbeitsbereich mit Menschen bewegen. Damit stets die exakten und korrekten Positionen der Maschinen verwendet werden, ist deren Lokalisierung entscheidend. Dies beinhaltet die genaue Ortung von Fahrzeugen, Anhängern und Fracht.







  • MES-Integrator und 360-Grad-Partner für optimierte Fertigung

    Das Manufacturing Execution System (MES) HYDRA optimiert Produktionsprozesse für Fertigungsunternehmen, um Wettbewerbsvorteile zu erzielen.


  • KI in Fertigungsbranche vorn

    Die neunte Ausgabe von Rockwell Automations „State of Smart Manufacturing“ Report liefert Einblicke in Trends und Herausforderungen für Hersteller. Dazu wurden über…


  • MiniTec SmartAssist in Version 2.9 verfügbar

    MiniTec bietet individuelle, auf Ergonomie ausgelegte Arbeitsplätze etwa für Montage und Kommissionierung.


  • Digitale Zwillinge automatisch rekonfigurieren

    Der Digitale Zwilling einer Produktionsanlage ermöglicht die Simulation des Verhaltens aktueller Konfigurationen. Die Implementierung neuer Produktionskonfigurationen kann so bereits im Vorfeld getestet…


  • Ein Stück näher am Quanteninternet

    Das Quanteninternet verspricht signifikante Verbesserungen in verschiedenen technologischen Schlüsselbereichen. Um dieses jedoch im bestehenden Glaserfasernetz zu realisieren, sind Quantenfrequenzkonverter nötig, die die…