Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Datenqualitäts-Prozesse

Verlässliche Basis für die Kundenpflege in der Industrie

Neben hochwertigen Produkten, einer effizienten Fertigung und einer agilen Supply-Chain lebt die Industrie nicht zuletzt von der guten Beziehung zu ihren Kunden. Kein Wunder, dass der Markt für Customer Relationship Management-Lösungen boomt. Die Systeme können maßgeblich zu erfolgreichen Kundenbeziehungen im produzierenden Gewerbe beitragen. Dazu musss allerdings auch die Qualität der in den IT-Anwendungen enthaltenen Daten stimmen.

Bild: Fotolia – Torbz

Kundenbeziehungsmanagement kann – bei qualitativ vergleichbaren Produkten am Markt – zum Alleinstellungsmerkmal oder ‚Unique selling proposition‘ (USP) werden. Einer aktuellen Studie zum Customer Relationship Management (CRM) zufolge planen mehr als die Hälfte der Unternehmen in Deutschland, Österreich und der Schweiz, in CRM-Projekte zu investieren. Befragt wurden dazu von dem Beratungshaus I2S Unternehmen aus Dienstleistung, Handel und Industrie. Als Projektziele geben 88 Prozent der Befragten die Verbesserung der Datenqualität an, und bei 28 Prozent der Befragten stellt die Datenqualität auch das Hauptproblem während des Betriebs eines CRM-Systems dar – egal ob auf analytischer oder auf operativer Ebene.

Hochwertige Daten sind Pflicht

Beim analytischen CRM ist eine hohe Datenqualität elementar, um valide Auswertungen im Rahmen von Business Intelligence (BI) überhaupt durchführen zu können. Denn sind schon die Analysen verfälscht, lassen sich darauf aufbauend auch keine sinnvollen strategischen Entscheidungen treffen. Im Bereich des operativen CRM dagegen werden qualitativ hochwertige Daten unter anderem für zielgruppengerechte Serviceangebote sowie für den Aufbau einer stabilen Kundenbeziehung benötigt. Eine schlechte Datenbasis kann daher schnell zum Scheitern der Projekte führen.

Der Datenqualitäts-Prozess

Egal, ob neues CRM-System, Optimierung eines bestehenden oder Zusammenfassung unabhängiger Systeme zu einem einheitlichen CRM-System – eine hohe Datenqualität lässt sich am besten durch einen dreistufigen Prozess erreichen.

1. Initiale Datenbereinigung

Bevor die Daten aus den verschiedenen Systemen in eine CRM-Lösung übernommen werden, ist es sinnvoll, eine initiale Bereinigung durchzuführen. Bei diesem Vorgang wird der gesamte Datenbestand softwaregestützt in einem ‚Batch-Lauf‘ geprüft und bereinigt. Mit leistungsstarken Datenqualitätsanwendungen lassen sich beispielsweise Informationen in ein einheitliches Format bringen, Feldinhalte unterschiedlicher Datenquellen einheitlichen Feldern zuordnen sowie Adressen postalisch auf ihre Korrektheit prüfen oder im Falle von Umzügen aktualisieren. Ferner werden Adressen in länderspezifische Formate gebracht oder um Geokoordinaten oder Branchenschlüssel ergänzt. Auch die Anreicherung mit unternehmenseigenen oder benutzerdefinierten Informationen ist möglich. Darüber hinaus lassen sich auch potenzielle Dubletten anhand individuell angepasster Such-Algorithmen zuverlässig identifizieren.

2. Firewall für Datenqualiät

Nach der Übernahme des bereinigten Datenbestands ist es wichtig Standards festzulegen, um die erreichte Datenqualität beizubehalten. Hier gibt es unterschiedliche Möglichkeiten: Der Anwender im CRM-System kann darauf achten, dass Eingaberegeln eingehalten werden. Straßennamen beispielsweise dürfen nur in die vorgesehenen Felder eingetragen werden. Zusätzlich lässt sich eine angegebene Adresse auf Richtigkeit prüfen – per Mausklick oder automatisch. Support-Mitarbeiter erfahren dann sofort, wenn eine Adresse nicht korrekt oder eindeutig ist. Ebenso wichtig ist es, dass die Anlage doppelter Datensätze vermieden wird. Leistungsstarke Datenqualitätslösungen prüfen bei Dateneingabe oder -änderungen eigenständig, ob etwa ein Kunde bereits im System registriert ist. Damit diese Prüfmechanismen akzeptiert und genutzt werden, muss die dahinter stehende Technik entsprechend performant, die Prüfung also einfach, schnell und effizient sein. Dauert die Prüfung zu lange oder liefert nicht die gewünschten Ergebnisse, wird die Funktion nicht genutzt und die ‚Data Quality Firewall‘ umgangen.

3. Data Maintenance

Die initiale Datenbereinigung und die implementierten Mechanismen zur Aufrechterhaltung der erreichten Datenqualität sind ein großer Schritt in Richtung einer hochwertigen Datenbasis. Darüber hinaus ist es sinnvoll, periodisch den Gesamtdatenbestand zu prüfen. So sollte beispielsweise regelmäßig eine Prüfung auf Straßen- und Ortsumbenennungen erfolgen. In Deutschland gibt es im Jahr rund 30.000 Änderungen bei Straßen, Postleitzahlen und Orten. Unter Umständen ist es auch notwendig, vorhandene Daten mit Zusatzinformationen anzureichern. So stellen Produzenten sicher, dass ihre Produkte am richtigen Ort ankommen. Dabei ist es ratsam, diese periodischen Prüfungen im Batch-Verfahren durchzuführen. Alle Daten des Gesamtbestands entsprechen dann zu bestimmten Zeitpunkten einem gemeinsamen Qualitätsstandard. Wenn Hersteller alle drei Prozessschritte implementieren und gewissenhaft umsetzen, ist ein entscheidender Schritt hin zu hoher Datenqualität im CRM-System getan.

google plus


Das könnte Sie auch interessieren:

Viele Entscheidungen basieren auf indirektem Wissen und Empfinden. Objektivierung ist teuer und aufwendig. Eine regelmäßige Erhebung des Kundennutzens findet meist nicht statt. Software kann produzierenden Unternehmen dabei helfen, an aussagekräftige Informationen über die Nutzung ihrer Produkte im Feld zu gelangen.‣ weiterlesen

Auch im Maschinen- und Anlagenbau legt der Schnittstellenstandard OPC UA zunehmend die Regeln für die Zusammenarbeit fest. Er befähigt die Hersteller, ihre Fertigungen digital zu vernetzen - und lässt die Umsetzung der Vision Plug&Work immer näher rücken.‣ weiterlesen

Die Umsatzerwartungen der deutschen Maschinenbauer sind für 2019 deutlich zurückgegangen. Das geht aus dem aktuellen Maschinenbaubarometer derWirtschaftsprüfungs- und Beratungsgesellschaft PWC hervor. Das größte Wachstumshindernis der Branche bleibt dabei der Fachkräftemangel.
‣ weiterlesen

Mit der Lösung Craftengine von Viking Heat Engines können sich selbst entlegene Winkel auf der Erde quasi autark mit Energie versorgen. Ein Ausfall dieser Abwärmeverstromung kann sehr teuer oder sogar gefährlich werden. Mit dem Fernwartungssystem eWon von Wachendorff werden die Anlagen deshalb über Funk überwacht.‣ weiterlesen

Beim starren Prozessmanagement der 90er und 2000er Jahre wurde möglichst alles in feste Prozesse gegossen, die dann in Software abgebildet wurden. Diese Herangehensweise wird in der Zukunft nicht mehr funktionieren.‣ weiterlesen

Der Simulationsexperte Altair hat seine Führungsspitze erweitert. Amy Messano ist neue Chief Marketing Officer und Ubaldo Rodriguez übernimmt die Position SVP Global Sales. Damit baut das Unternehmen seine weltweite Vertriebs- und Marketingorganisation weiter aus.‣ weiterlesen

Anzeige
Anzeige
Anzeige