Virtuelle Hochtemperatur-Versuche

Schneller zur Realität

Die SGL Group ist einer der weltweit führenden Hersteller von Produkten aus Carbon. Für die Entwicklung seiner Produkte, die vom Kohlenstoff- und Graphitprodukten bis hin zu Carbonfasern und Verbundwerkstoffen reichen, verbindet der Spezialist für Hochtemperatur-Prozesse Simulationsanwendungen mit physikalischen Versuchsaufbauten.

Bild: SGL Group

Carbonwerkstoffe weisen einzigartige Materialeigenschaften auf, beispielsweise eine hohe Strom- und Wärmeleitfähigkeit, sehr gute Hitze- und Korrosionsbeständigkeit, hohe Gleitfähigkeit sowie extreme Leichtigkeit bei gleichzeitig hoher Festigkeit. Die Hochleistungsprodukte der SGL Group werden aufgrund der Energie- und Rohstoffknappheit zunehmend in industriellen Bereichen nachgefragt. Aber auch im Alltag halten sie verstärkt Einzug und ersetzen traditionelle Werkstoffe. Aufgrund des sehr breiten Anwendungsportfolios, das auf dem Konzept ‚Broad Base – Best Solutions‘ basiert, werden bei der Unternehmensgruppe sowohl elektrische, thermische, mechanische als auch strömungsmechanische Produkteigenschaften durch Simulationen optimiert und den steigenden Kundenanforderungen angepasst.

Anwendungsbeispiel Elektrode

Eine beispielhafte Anwendung ist die Festigkeit von Hochleistungselektroden aus Graphit, die von der SGL Group mit Durchmessern von bis zu 800 Millimetern gefertigt werden und heute ein Industriestandard sind. Diese Graphitelektroden werden zur Erzeugung von Lichtbögen für die Stahlschmelze eingesetzt und müssen hohen Anforderungen hinsichtlich Beständigkeit und Energieverbrauch erfüllen.

Glühende Graphitelektroden im Modell abbilden

Um die Leistungsfähigkeit ihrer Elektroden und damit die Produktivität ihrer Kunden zu steigern, setzt das Unternehmen auf Simulationen nach der Finite-Elemente-Methode (FEM). Dazu kommt die Software Ansys zum EInsatz. In thermo-mechanisch gekoppelten Analysen werden so die thermischen Spannungen in der Elektrode berechnet und zur optimalen Auslastung herangezogen. Um Entscheidungen über mögliche Leistungssteigerungen mit hoher Sicherheit treffen zu können, werden die relevanten physikalischen Effekte in der FEM sowie einer Simulation der numerischen Strömungsmechanik oder ‚Computational fluid dynamics‘ (CFD) genau abgebildet.

Dadurch kann auch komplexes Materialverhalten in Bezug auf die elektrischen, thermischen und mechanischen Eigenschaften abgebildet werden. Denn die Vielzahl der Materialparameter, ihre Temperaturabhängigkeit, der große Temperaturbereich und die Bauteilabmessungen machen Messungen an realen Strukturen extrem aufwändig. „Wir sind bei der Simulation oftmals mit Inputparametern konfrontiert, deren Messungen unter realen Prozessbedingungen nur sehr eingeschränkt möglich ist. Beispielsweise erfordern realitätsnahe Messreihen mit Graphit oder CFC-Bauteilen Temperaturen von über 1.000 Grad Celsius, was zu erheblichen Einschränkungen führt“, erläutert Dr. Raphael Gutser, seit 2010 bei der SGL Group in Meitingen bei Augsburg beschäftigt.