Computer Integrated Manufacturing

Auf der Suche nach dem
perfekten Zusammenspiel

Damit IT-Systeme in Produktionsbetrieben möglichst effizient arbeiten, bietet sich der Einsatz vernetzter Konstruktions-, Planungs- und Fertigungssteuerungssysteme an. Dieses Ziel verfolgen Unternehmen bereits seit den 1970er Jahren. Damals standen dem Erfolg vernetzter Lösungen vor allem geringe Rechen- und Übertragungskapazitäten entgegen. Doch auch heute arbeiten Fachabteilungen noch vielfach mit IT-Lösungen mit niedrigem Integrationsgrad. Der effiziente, unternehmensweite Datenaustausch bleibt eine Herausforderung.

Die ‚Digitale Fabrik‘ steht auch heute noch vor einigen Hürden. Zwar laufen zahlreiche Prozesse in Unternehmen bereits computergestützt ab – etwa die abgebildete, automatisierte Fertigung mit Hilfe von Robotern – doch die unterschiedlichen Systeme der einzelnen Abteilungen lassen sich in den meisten Fällen nur schwer vernetzen. Bild: Arcplan

Unternehmen erhoffen sich von computergestützten Entwicklungs- und Fertigungsverfahren oftmals hohe Produktionssteigerungen. Oftmals ergeben sich in der Realität aber nur noch kleine Verbesserungen bei Ertrag und Ergebnis: Die realisierten Umsatz- und Preissteigerungen kompensieren die schnell wachsenden Rohstoff- und Energiekosten kaum noch. Zudem fordern weltweit gesättigte Absatzmärkte von vielen Unternehmen eine flexible Auftragsfertigung bei zum Teil kleinen Losgrößen. Eine wichtige Schlüsselrolle, um diesen Anforderungen gerecht zu werden und gleichzeitig die Produktivität zu steigern, spielen vernetzte Konstruktions-, Planungs- und Fertigungssteuerungssysteme und die Nutzung computergeführter Fertigungseinrichtungen. Diesen Ansatz fasst der Oberbegriff Computer Integrated Manufacturing (CIM) zusammen.

Computerintegrierte Fertigung

Der Trend hin zur individueller Fertigung nahm in den 1970er Jahren ihren Anfang. Eine Fraunhofer-Untersuchung zeigte bereits im Jahr 1972, dass Produkte im Maschinenbau zu 90 Prozent kundenspezifische Anforderungen enthielten. Doch 50 Prozent der Produkte befanden sich damals auf einem Entwicklungsstand älter als zehn Jahre, lediglich 20 Prozent hatten einen Entwicklungsstand von unter fünf Jahren. Obwohl die Wettbewerbssituation Unternehmen zu Innovationen zwang, blieb das durchschnittliche Produktalter aus dem Maschinen- und Anlagenbau hoch.

Diese Problematik nahm Anfang der 1970er Jahre Dr. Joseph Harrington in den USA zum Anlass, um nach Prozeduren zu suchen, die hohe Qualität und niedrige Preise sichern sollten. Sein Ansatz galt der computerintegrierten Fertigung, die Harrington bei der US-Luftwaffe im Projekt ICAM ‚Integrated Computer Aided Manufacturing‘ untersuchte. Den Begriff CIM führte der Wissenschaftler im Jahr 1973 ein: Seitdem beschreibt die Abkürzung CIM eine Weiterführung seines Ursprungskonzeptes, welche die Computerunterstützung auf alle Unternehmensbereiche ausweitet.

Die ersten CIM-Strukturen unterschieden sich nur wenig von heutigen Ansätzen und sehen die Verbindung der Arbeitsschritte Konstruktion, Arbeitsvorbereitung, Fertigung und Lager vor. Die ersten Bemühungen CIM umzusetzen scheiterten jedoch an den geringen Rechenleistungen der EDV-Systeme. Die Rechner sollten große Datenmengen handhaben, um beispielsweise ein Planungstool zu gestalten und so die Arbeitsvorbereitung vom Papier in computergestützte Vorlagen zu überführen. Zudem fehlten Übertragungsmöglichkeiten von den anfänglichen CAD-Programmen, beispielsweise hin zu Fertigung oder Finanzabteilung. Die Datenübertragung war ohne Medienbrüche unmöglich.

Inzwischen stellt die Rechenleistung zwar kein Problem mehr dar, Unternehmen sehen sich jedoch nach wie vor mit Medienbrüchen konfrontiert. Den weiterhin hohen Bedarf nach vernetzte Steuerungssysteme zeigt eine Analyse des nordamerikanischen Beratungsunternehmens CIM Data: Das Beratungshaus schätzt, dass der CIM-Markt allein im Jahr 2010 um 9,7 Prozent auf insgesamt 25,8 Milliarden US-Dollar gewachsen ist. Als derzeit größte Anbieter in diesem Marktsegment nennt eine Rangliste des Unternehmens Dassault Sysèmes an erster Position, gefolgt von Autodesk, Siemens PLM Software, PTC, SAP und Oracle.

Produktentwicklung: ‚just in time‘ und auf den Kunden abgestimmt

Auch die Forderungen des Marktes von 1970 sind heute noch aktuell: Der internationale Wettbewerb verlangt von Unternehmen den Produktlebenszyklus zu verkürzen, also schnell neue Varianten oder Produkte zu entwickeln. Zudem sind in gesättigten Märkten die Produkte austauschbar geworden, und nur durch ständige Innovationen werden noch Wettbewerbsvorteile erreicht. Eine weitere wichtige Forderung des Käufer-Marktes sind kundenspezifische Lösungen, die ‚just in time‘ geliefert werden sollen. Dieser Forderung steht beispielsweise der Automobil-Zulieferbereich täglich gegenüber.

Kein fertiges Produkt, sondern eine Strategie

In diesem Umfeld sollen CIM-Lösungen die Unternehmen unterstützen, profitabler und schneller zu agieren. Grundsätzlich stellen die Systeme Datenbanken dar. Sie werden jedoch nicht als ein fertiges Produkt verstanden, sondern als Strategie, um Unternehmensziele zu erreichen und Kennzahlen zu generieren. Deshalb passen Anbieter und IT-Abteilungen die Lösung stets an die Strukturen im Unternehmen an. Häufig enthalten die IT-Lösungen Abbildungen von Funktionen wie Planung, Vertrieb, Einkauf, Fertigung und Entwicklung. Diese betrieblichen Funktionen sind untereinander vernetzt, um den Datenaustausch zu sichern. Der Sinn dieser Vernetzung besteht in der effizienten und zeitlich synchronisierten Verarbeitung sowie Verteilung der Unternehmensdaten. Das Ziel lautet, Ressourcen im Unternehmen optimal zu nutzen, um kostengünstig und termingerecht zu produzieren. Um CIM besser zu verstehen und den Umfang der Vernetzungen zu verdeutlichen, bietet sich die Betrachtung des Informationsflusses von den einzelnen Abteilungen in eine CIM-Lösung an. Dabei lassen sich alle innerbetrieblichen Informationen auf wenige, zentrale Informationsquellen verdichten:

  • Produktinformation wie Zeichnungen, Stücklisten oder Arbeitspläne
  • Auftragsinformation, beispielsweise Stückzahl, Kunde, Liefer- und Zahlungsbedingungen
  • Personeninformation, wie Mitarbeiterdaten, Arbeitszeiten oder Vergütung
  • Maschineninformation, darunter Hersteller, Wartungsintervalle und Störmeldungen
  • Fertigungsinformation, zu denen Betriebsmittel und Material zählen
  • Finanzinformation, beispielsweise Zahlungen, Forderungen und Verbindlichkeiten

Kennzeichen einer ‚Fabrik der Zukunft‘ ist der durchgängige Informationsfluss, bei dem alle an der Produktion beteiligten Abteilungen vernetzt arbeiten. Marktbeobachtungen zufolge sind jedoch die meisten Betriebe noch weit von CIM entfernt. Waren zu Beginn der 1970er Jahre die Erwartungen an CIM sehr hoch, hat sich diese Euphorie inzwischen abgeschwächt. Aktuell existieren in den meisten Unternehmen zwar IT-Lösungen in den jeweiligen Abteilungen, diese lassen sich aber meist nur schwer vernetzen.

Kurze Entwicklungszeiten, schnelle Reaktion auf den Markt

Doch die Vorteile, die sich durch die Nutzung von CIM-Ansätzen bieten, sind hoch: Bei durchgängigem Informationsfluss ergeben sich durch die optimale Nutzung von Fertigungskapazitäten Minimalkosten, eine Reduktion der Lagerbestände, kurze Entwicklungszeiten, die auf Marktveränderungen rasch ragieren, verkürzte Lieferzeiten und konstante Qualität. Die Nachfrage nach IT-Systemen, die die Arbeit von Fachabteilungen verbinden, dürfte daher in absehbarerer Zeit auf hohem Niveau bleiben.

 

10 Schritte der digitalen Fertigung

In einem CIM-Fertigungsunternehmen sind alle Produktionsbereiche vernetzt, von der Produktentwicklung im CAD-System bis zur Verwaltung der Fertigprodukte im automatisierten Waren- und Distributionszentrum. Ein vernetztes Computersystem überwacht und steuert alle Prozesse.

  1. Computer Aided Design (CAD):Die komplette Produktentwicklung wird auf einem Computersystem realisiert.
  2. Rapid Prototyping: Erste Produktmuster werden auf 3D-Druckern anhand der CAD-Daten erstellt.
  3. Automatische Kalkulation der Herstellkosten.
  4. Automatisierter Einkauf: Ein Computer unterstütztden Materialeinkauf.
  5. Computer Aided Manufacturing (CAM): Software für CNC-Produktionszentren wird automatisch erstellt.
  6. Automatische Qualitätssicherung: Ein Computer prüft beispielsweise die Maßhaltigkeit gefertigter Teile.
  7. Robotor-Montage: Der Zusammenbau der Einzelteile erfolgt automatisiert.
  8. Automatisierte Funktionskontrolle: Computer führen eine vollständige Funktionskontrolle durch.
  9. Automatisiertes Fertigteilelager: Produkte werden computergesteuert eingelagert.
  10. Automatisiere Auftragsabwicklung: Nach Eingang der Kundenbestellung werden Lieferpapiere automatisch generiert. Die Bestelldaten werden an die Buchhaltung überspielt.






  • MiniTec SmartAssist in Version 2.9 verfügbar

    MiniTec bietet individuelle, auf Ergonomie ausgelegte Arbeitsplätze etwa für Montage und Kommissionierung.


  • Digitale Zwillinge automatisch rekonfigurieren

    Der Digitale Zwilling einer Produktionsanlage ermöglicht die Simulation des Verhaltens aktueller Konfigurationen. Die Implementierung neuer Produktionskonfigurationen kann so bereits im Vorfeld getestet…


  • Ein Stück näher am Quanteninternet

    Das Quanteninternet verspricht signifikante Verbesserungen in verschiedenen technologischen Schlüsselbereichen. Um dieses jedoch im bestehenden Glaserfasernetz zu realisieren, sind Quantenfrequenzkonverter nötig, die die…


  • Innovationstreiber Thin[gk]athon: Kollaborative Intelligenz trifft auf Industrie-Expertise

    Der Thin[gk]athon, veranstaltet vom Smart Systems Hub, vereint kollaborative Intelligenz und Industrie-Expertise, um in einem dreitägigen Hackathon innovative Lösungsansätze für komplexe Fragestellungen…


  • KI in Fertigungsbranche vorn

    Die neunte Ausgabe von Rockwell Automations „State of Smart Manufacturing“ Report liefert Einblicke in Trends und Herausforderungen für Hersteller. Dazu wurden über…